kernel-hacking-2024-linux-s.../crypto/asymmetric_keys/x509_public_key.c
David Howells ad3043fda3 X.509: Fix self-signed determination
There's a bug in the code determining whether a certificate is self-signed
or not: if they have neither AKID nor SKID then we just assume that the
cert is self-signed, which may not be true.

Fix this by checking that the raw subject name matches the raw issuer name
and that the public key algorithm for the key and signature are both the
same in addition to requiring that the AKID bits match.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:13:34 +01:00

452 lines
11 KiB
C

/* Instantiate a public key crypto key from an X.509 Certificate
*
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#define pr_fmt(fmt) "X.509: "fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <keys/asymmetric-subtype.h>
#include <keys/asymmetric-parser.h>
#include <keys/system_keyring.h>
#include <crypto/hash.h>
#include "asymmetric_keys.h"
#include "x509_parser.h"
static bool use_builtin_keys;
static struct asymmetric_key_id *ca_keyid;
#ifndef MODULE
static struct {
struct asymmetric_key_id id;
unsigned char data[10];
} cakey;
static int __init ca_keys_setup(char *str)
{
if (!str) /* default system keyring */
return 1;
if (strncmp(str, "id:", 3) == 0) {
struct asymmetric_key_id *p = &cakey.id;
size_t hexlen = (strlen(str) - 3) / 2;
int ret;
if (hexlen == 0 || hexlen > sizeof(cakey.data)) {
pr_err("Missing or invalid ca_keys id\n");
return 1;
}
ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen);
if (ret < 0)
pr_err("Unparsable ca_keys id hex string\n");
else
ca_keyid = p; /* owner key 'id:xxxxxx' */
} else if (strcmp(str, "builtin") == 0) {
use_builtin_keys = true;
}
return 1;
}
__setup("ca_keys=", ca_keys_setup);
#endif
/**
* x509_request_asymmetric_key - Request a key by X.509 certificate params.
* @keyring: The keys to search.
* @id: The issuer & serialNumber to look for or NULL.
* @skid: The subjectKeyIdentifier to look for or NULL.
* @partial: Use partial match if true, exact if false.
*
* Find a key in the given keyring by identifier. The preferred identifier is
* the issuer + serialNumber and the fallback identifier is the
* subjectKeyIdentifier. If both are given, the lookup is by the former, but
* the latter must also match.
*/
struct key *x509_request_asymmetric_key(struct key *keyring,
const struct asymmetric_key_id *id,
const struct asymmetric_key_id *skid,
bool partial)
{
struct key *key;
key_ref_t ref;
const char *lookup;
char *req, *p;
int len;
if (id) {
lookup = id->data;
len = id->len;
} else {
lookup = skid->data;
len = skid->len;
}
/* Construct an identifier "id:<keyid>". */
p = req = kmalloc(2 + 1 + len * 2 + 1, GFP_KERNEL);
if (!req)
return ERR_PTR(-ENOMEM);
if (partial) {
*p++ = 'i';
*p++ = 'd';
} else {
*p++ = 'e';
*p++ = 'x';
}
*p++ = ':';
p = bin2hex(p, lookup, len);
*p = 0;
pr_debug("Look up: \"%s\"\n", req);
ref = keyring_search(make_key_ref(keyring, 1),
&key_type_asymmetric, req);
if (IS_ERR(ref))
pr_debug("Request for key '%s' err %ld\n", req, PTR_ERR(ref));
kfree(req);
if (IS_ERR(ref)) {
switch (PTR_ERR(ref)) {
/* Hide some search errors */
case -EACCES:
case -ENOTDIR:
case -EAGAIN:
return ERR_PTR(-ENOKEY);
default:
return ERR_CAST(ref);
}
}
key = key_ref_to_ptr(ref);
if (id && skid) {
const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
if (!kids->id[1]) {
pr_debug("issuer+serial match, but expected SKID missing\n");
goto reject;
}
if (!asymmetric_key_id_same(skid, kids->id[1])) {
pr_debug("issuer+serial match, but SKID does not\n");
goto reject;
}
}
pr_devel("<==%s() = 0 [%x]\n", __func__, key_serial(key));
return key;
reject:
key_put(key);
return ERR_PTR(-EKEYREJECTED);
}
EXPORT_SYMBOL_GPL(x509_request_asymmetric_key);
/*
* Set up the signature parameters in an X.509 certificate. This involves
* digesting the signed data and extracting the signature.
*/
int x509_get_sig_params(struct x509_certificate *cert)
{
struct public_key_signature *sig = cert->sig;
struct crypto_shash *tfm;
struct shash_desc *desc;
size_t desc_size;
int ret;
pr_devel("==>%s()\n", __func__);
if (!cert->pub->pkey_algo)
cert->unsupported_key = true;
if (!sig->pkey_algo)
cert->unsupported_sig = true;
/* We check the hash if we can - even if we can't then verify it */
if (!sig->hash_algo) {
cert->unsupported_sig = true;
return 0;
}
sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
if (!sig->s)
return -ENOMEM;
sig->s_size = cert->raw_sig_size;
/* Allocate the hashing algorithm we're going to need and find out how
* big the hash operational data will be.
*/
tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
if (IS_ERR(tfm)) {
if (PTR_ERR(tfm) == -ENOENT) {
cert->unsupported_sig = true;
return 0;
}
return PTR_ERR(tfm);
}
desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
sig->digest_size = crypto_shash_digestsize(tfm);
ret = -ENOMEM;
sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
if (!sig->digest)
goto error;
desc = kzalloc(desc_size, GFP_KERNEL);
if (!desc)
goto error;
desc->tfm = tfm;
desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
ret = crypto_shash_init(desc);
if (ret < 0)
goto error_2;
might_sleep();
ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, sig->digest);
error_2:
kfree(desc);
error:
crypto_free_shash(tfm);
pr_devel("<==%s() = %d\n", __func__, ret);
return ret;
}
/*
* Check for self-signedness in an X.509 cert and if found, check the signature
* immediately if we can.
*/
int x509_check_for_self_signed(struct x509_certificate *cert)
{
int ret = 0;
pr_devel("==>%s()\n", __func__);
if (cert->raw_subject_size != cert->raw_issuer_size ||
memcmp(cert->raw_subject, cert->raw_issuer,
cert->raw_issuer_size) != 0)
goto not_self_signed;
if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
/* If the AKID is present it may have one or two parts. If
* both are supplied, both must match.
*/
bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
if (!a && !b)
goto not_self_signed;
ret = -EKEYREJECTED;
if (((a && !b) || (b && !a)) &&
cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
goto out;
}
ret = -EKEYREJECTED;
if (cert->pub->pkey_algo != cert->sig->pkey_algo)
goto out;
ret = public_key_verify_signature(cert->pub, cert->sig);
if (ret < 0) {
if (ret == -ENOPKG) {
cert->unsupported_sig = true;
ret = 0;
}
goto out;
}
pr_devel("Cert Self-signature verified");
cert->self_signed = true;
out:
pr_devel("<==%s() = %d\n", __func__, ret);
return ret;
not_self_signed:
pr_devel("<==%s() = 0 [not]\n", __func__);
return 0;
}
/*
* Check the new certificate against the ones in the trust keyring. If one of
* those is the signing key and validates the new certificate, then mark the
* new certificate as being trusted.
*
* Return 0 if the new certificate was successfully validated, 1 if we couldn't
* find a matching parent certificate in the trusted list and an error if there
* is a matching certificate but the signature check fails.
*/
static int x509_validate_trust(struct x509_certificate *cert,
struct key *trust_keyring)
{
struct public_key_signature *sig = cert->sig;
struct key *key;
int ret = 1;
if (!sig->auth_ids[0] && !sig->auth_ids[1])
return 1;
if (!trust_keyring)
return -EOPNOTSUPP;
if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid))
return -EPERM;
if (cert->unsupported_sig)
return -ENOPKG;
key = x509_request_asymmetric_key(trust_keyring,
sig->auth_ids[0], sig->auth_ids[1],
false);
if (IS_ERR(key))
return PTR_ERR(key);
if (!use_builtin_keys ||
test_bit(KEY_FLAG_BUILTIN, &key->flags)) {
ret = public_key_verify_signature(
key->payload.data[asym_crypto], cert->sig);
if (ret == -ENOPKG)
cert->unsupported_sig = true;
}
key_put(key);
return ret;
}
/*
* Attempt to parse a data blob for a key as an X509 certificate.
*/
static int x509_key_preparse(struct key_preparsed_payload *prep)
{
struct asymmetric_key_ids *kids;
struct x509_certificate *cert;
const char *q;
size_t srlen, sulen;
char *desc = NULL, *p;
int ret;
cert = x509_cert_parse(prep->data, prep->datalen);
if (IS_ERR(cert))
return PTR_ERR(cert);
pr_devel("Cert Issuer: %s\n", cert->issuer);
pr_devel("Cert Subject: %s\n", cert->subject);
if (cert->unsupported_key) {
ret = -ENOPKG;
goto error_free_cert;
}
pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
cert->pub->id_type = "X509";
/* See if we can derive the trustability of this certificate.
*
* When it comes to self-signed certificates, we cannot evaluate
* trustedness except by the fact that we obtained it from a trusted
* location. So we just rely on x509_validate_trust() failing in this
* case.
*
* Note that there's a possibility of a self-signed cert matching a
* cert that we have (most likely a duplicate that we already trust) -
* in which case it will be marked trusted.
*/
if (cert->unsupported_sig || cert->self_signed) {
public_key_signature_free(cert->sig);
cert->sig = NULL;
} else {
pr_devel("Cert Signature: %s + %s\n",
cert->sig->pkey_algo, cert->sig->hash_algo);
ret = x509_validate_trust(cert, get_system_trusted_keyring());
if (ret)
ret = x509_validate_trust(cert, get_ima_mok_keyring());
if (ret == -EKEYREJECTED)
goto error_free_cert;
if (!ret)
prep->trusted = true;
}
/* Propose a description */
sulen = strlen(cert->subject);
if (cert->raw_skid) {
srlen = cert->raw_skid_size;
q = cert->raw_skid;
} else {
srlen = cert->raw_serial_size;
q = cert->raw_serial;
}
ret = -ENOMEM;
desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
if (!desc)
goto error_free_cert;
p = memcpy(desc, cert->subject, sulen);
p += sulen;
*p++ = ':';
*p++ = ' ';
p = bin2hex(p, q, srlen);
*p = 0;
kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
if (!kids)
goto error_free_desc;
kids->id[0] = cert->id;
kids->id[1] = cert->skid;
/* We're pinning the module by being linked against it */
__module_get(public_key_subtype.owner);
prep->payload.data[asym_subtype] = &public_key_subtype;
prep->payload.data[asym_key_ids] = kids;
prep->payload.data[asym_crypto] = cert->pub;
prep->payload.data[asym_auth] = cert->sig;
prep->description = desc;
prep->quotalen = 100;
/* We've finished with the certificate */
cert->pub = NULL;
cert->id = NULL;
cert->skid = NULL;
cert->sig = NULL;
desc = NULL;
ret = 0;
error_free_desc:
kfree(desc);
error_free_cert:
x509_free_certificate(cert);
return ret;
}
static struct asymmetric_key_parser x509_key_parser = {
.owner = THIS_MODULE,
.name = "x509",
.parse = x509_key_preparse,
};
/*
* Module stuff
*/
static int __init x509_key_init(void)
{
return register_asymmetric_key_parser(&x509_key_parser);
}
static void __exit x509_key_exit(void)
{
unregister_asymmetric_key_parser(&x509_key_parser);
}
module_init(x509_key_init);
module_exit(x509_key_exit);
MODULE_DESCRIPTION("X.509 certificate parser");
MODULE_LICENSE("GPL");