mirror of
https://github.com/pds-nest/nest.git
synced 2024-11-25 14:34:19 +00:00
53 lines
3.3 KiB
Python
53 lines
3.3 KiB
Python
|
from datetime import datetime
|
||
|
from math import cos, radians
|
||
|
|
||
|
from nest_backend.database import *
|
||
|
|
||
|
|
||
|
def associate_condition_tweet(conditions_type, tweet):
|
||
|
if ConditionType.hashtag in conditions_type.keys():
|
||
|
for condition_content in conditions_type[ConditionType.hashtag]:
|
||
|
if condition_content.content in [hashtag['text'] for hashtag in tweet.entities['hashtags']]:
|
||
|
if not Contains.query.filter_by(snowflake=str(tweet.id), cid=condition_content.id).all():
|
||
|
condition_associated = Contains(cid=condition_content.id, snowflake=tweet.id)
|
||
|
ext.session.add(condition_associated)
|
||
|
ext.session.commit()
|
||
|
if ConditionType.user in conditions_type.keys():
|
||
|
for condition_content in conditions_type[ConditionType.user]:
|
||
|
if condition_content.content == tweet.author.screen_name:
|
||
|
if not Contains.query.filter_by(snowflake=str(tweet.id), cid=condition_content.id).all():
|
||
|
condition_associated = Contains(cid=condition_content.id, snowflake=tweet.id)
|
||
|
ext.session.add(condition_associated)
|
||
|
ext.session.commit()
|
||
|
if ConditionType.time in conditions_type.keys():
|
||
|
for condition_content in conditions_type[ConditionType.time]:
|
||
|
condition_date_time = datetime.fromisoformat(condition_content.content[2:])
|
||
|
if condition_content.content[0] == '<':
|
||
|
if tweet.created_at < condition_date_time:
|
||
|
if not Contains.query.filter_by(snowflake=str(tweet.id), cid=condition_content.id).all():
|
||
|
condition_associated = Contains(cid=condition_content.id, snowflake=tweet.id)
|
||
|
ext.session.add(condition_associated)
|
||
|
ext.session.commit()
|
||
|
elif condition_content.content[0] == '>':
|
||
|
if tweet.created_at > condition_date_time:
|
||
|
if not Contains.query.filter_by(snowflake=str(tweet.id), cid=condition_content.id).all():
|
||
|
condition_associated = Contains(cid=condition_content.id, snowflake=tweet.id)
|
||
|
ext.session.add(condition_associated)
|
||
|
ext.session.commit()
|
||
|
if ConditionType.coordinates in conditions_type.keys():
|
||
|
for condition_content in conditions_type[ConditionType.coordinates]:
|
||
|
coordinates = condition_content.content.split()
|
||
|
if tweet.geo is not None and is_coordinate_inside_bounding_box(float(coordinates[2]), float(coordinates[3]), float(coordinates[1])/1000, tweet.geo['coordinates'][0], tweet.geo['coordinates'][1]):
|
||
|
if not Contains.query.filter_by(snowflake=str(tweet.id), cid=condition_content.id).all():
|
||
|
condition_associated = Contains(cid=condition_content.id, snowflake=tweet.id)
|
||
|
ext.session.add(condition_associated)
|
||
|
ext.session.commit()
|
||
|
|
||
|
|
||
|
def is_coordinate_inside_bounding_box(latitude, longitude, radius, tweet_latitude, tweet_longitude):
|
||
|
earth_radius_km = 6371
|
||
|
dLatitude = 360 * radius / earth_radius_km
|
||
|
dLongitude = dLatitude * cos(radians(latitude))
|
||
|
if (latitude - dLatitude < tweet_latitude < latitude+dLatitude) and (longitude-dLongitude < tweet_longitude < longitude+dLongitude):
|
||
|
return True
|