1
Fork 0
mirror of https://github.com/Steffo99/sdmx-sandbox.git synced 2025-01-05 05:29:43 +00:00

💡 Understand how pandas series work

This commit is contained in:
Steffo 2021-03-15 03:12:20 +01:00
parent e7d8fe26ac
commit e57b0481d2
Signed by: steffo
GPG key ID: 6965406171929D01

View file

@ -41,16 +41,16 @@
"Requirement already satisfied: pandasdmx in ./venv/lib/python3.9/site-packages (1.4.1)\r\n",
"Requirement already satisfied: pydantic==1.7 in ./venv/lib/python3.9/site-packages (1.7)\r\n",
"Requirement already satisfied: requests>=2.7 in ./venv/lib/python3.9/site-packages (from pandasdmx) (2.25.1)\r\n",
"Requirement already satisfied: lxml>=3.6 in ./venv/lib/python3.9/site-packages (from pandasdmx) (4.6.2)\r\n",
"Requirement already satisfied: pandas>=1.0 in ./venv/lib/python3.9/site-packages (from pandasdmx) (1.2.3)\r\n",
"Requirement already satisfied: lxml>=3.6 in ./venv/lib/python3.9/site-packages (from pandasdmx) (4.6.2)\r\n",
"Requirement already satisfied: pytz>=2017.3 in ./venv/lib/python3.9/site-packages (from pandas>=1.0->pandasdmx) (2021.1)\r\n",
"Requirement already satisfied: numpy>=1.16.5 in ./venv/lib/python3.9/site-packages (from pandas>=1.0->pandasdmx) (1.20.1)\r\n",
"Requirement already satisfied: python-dateutil>=2.7.3 in ./venv/lib/python3.9/site-packages (from pandas>=1.0->pandasdmx) (2.8.1)\r\n",
"Requirement already satisfied: pytz>=2017.3 in ./venv/lib/python3.9/site-packages (from pandas>=1.0->pandasdmx) (2021.1)\r\n",
"Requirement already satisfied: six>=1.5 in ./venv/lib/python3.9/site-packages (from python-dateutil>=2.7.3->pandas>=1.0->pandasdmx) (1.15.0)\r\n",
"Requirement already satisfied: chardet<5,>=3.0.2 in ./venv/lib/python3.9/site-packages (from requests>=2.7->pandasdmx) (4.0.0)\r\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in ./venv/lib/python3.9/site-packages (from requests>=2.7->pandasdmx) (1.26.3)\r\n",
"Requirement already satisfied: idna<3,>=2.5 in ./venv/lib/python3.9/site-packages (from requests>=2.7->pandasdmx) (2.10)\r\n",
"Requirement already satisfied: certifi>=2017.4.17 in ./venv/lib/python3.9/site-packages (from requests>=2.7->pandasdmx) (2020.12.5)\r\n"
"Requirement already satisfied: certifi>=2017.4.17 in ./venv/lib/python3.9/site-packages (from requests>=2.7->pandasdmx) (2020.12.5)\r\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in ./venv/lib/python3.9/site-packages (from requests>=2.7->pandasdmx) (1.26.3)\r\n"
]
}
],
@ -109,7 +109,21 @@
{
"cell_type": "markdown",
"source": [
"È possibile selezionare tra più fonti di dati, tra i quali Eurostat:"
"È possibile selezionare tra più fonti di dati, tra i quali Eurostat (`ESTAT`)."
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"> __Request__: client di comunicazione tra `pandasdmx` e un server di dati come Eurostat\n",
"\n",
"Come prima cosa, è necessario creare un'istanza di `pandasdmx.Request`:"
],
"metadata": {
"collapsed": false,
@ -124,7 +138,7 @@
"outputs": [
{
"data": {
"text/plain": "<pandasdmx.api.Request at 0x7fc5ec2b6970>"
"text/plain": "<pandasdmx.api.Request at 0x7f4410c71940>"
},
"execution_count": 3,
"metadata": {},
@ -132,7 +146,6 @@
}
],
"source": [
"# Crea un \"client\" di comunicazione SDMX-ML con Eurostat\n",
"eurostat: pandasdmx.Request = pandasdmx.Request(\"ESTAT\")\n",
"eurostat"
],
@ -146,7 +159,11 @@
{
"cell_type": "markdown",
"source": [
"Sembra che PandaSDMX implementi la funzionalità che cercavamo di ricerca metadati:"
"> __Dataflow__: set di metadati relativi a una misura effettuata (ad esempio, `educ_enrl1ad - Students by ISCED level, study intensity and sex`)\n",
"\n",
"> __Message__: risposta HTTPS ricevuta in seguito a una richiesta effettuata ad un server di dati\n",
"\n",
"Poi, scarichiamo _tutti_ i dataflow disponibili usando `.dataflow()` sul client creato in precedenza per effettuare una richiesta al server Eurostat, creando un `pandasdmx.message.Message`:"
],
"metadata": {
"collapsed": false,
@ -161,7 +178,7 @@
"outputs": [
{
"data": {
"text/plain": "<pandasdmx.StructureMessage>\n <Header>\n id: 'IDREF372221'\n prepared: '2021-03-13T13:41:50.771000+00:00'\n receiver: <Agency Unknown>\n sender: <Agency Unknown>\n source: \n test: False\n response: <Response [200]>\n DataflowDefinition (6573): DS-018995 DS-022469 DS-032655 DS-043227 DS...\n DataStructureDefinition (6573): DSD_DS-018995 DSD_DS-022469 DSD_DS-03..."
"text/plain": "<pandasdmx.StructureMessage>\n <Header>\n id: 'IDREF382067'\n prepared: '2021-03-15T01:45:49.005000+00:00'\n receiver: <Agency Unknown>\n sender: <Agency Unknown>\n source: \n test: False\n response: <Response [200]>\n DataflowDefinition (6573): DS-018995 DS-022469 DS-032655 DS-043227 DS...\n DataStructureDefinition (6573): DSD_DS-018995 DSD_DS-022469 DSD_DS-03..."
},
"execution_count": 4,
"metadata": {},
@ -169,8 +186,6 @@
}
],
"source": [
"# Scarica i metadati di TUTTI dataflow disponibili su Eurostat\n",
"# Ci mette qualche minuto: i dataflow sono 6573!\n",
"all_flows_msg: pandasdmx.message.Message = eurostat.dataflow()\n",
"all_flows_msg"
],
@ -181,10 +196,23 @@
}
}
},
{
"cell_type": "markdown",
"source": [
"> __Series__: una specie di `dict` più veloce e avanzato implementato da `pandas`\n",
"\n",
"PandaSDMX ha la funzionalità che cercavamo di cercare dataset per keyword!\n",
"\n",
"Per effettuare la ricerca, usiamo il metodo `.to_pandas()` per convertire il `Message` in oggetti Python e/o `pandas`, poi usiamo i metodi \"nativi\" per trovare quello che ci serve:"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"# Convertiamo i risultati in due Series di pandas, una con i dataflow e una con la loro relativa struttura\n",
"# Converte i risultati in due Series di pandas, una con i dataflow e una con la loro relativa struttura\n",
"_dict: dict[str, pandas.Series] = all_flows_msg.to_pandas()\n",
"all_flows: pandas.Series = _dict[\"dataflow\"]\n",
"all_structs: pandas.Series = _dict[\"structure\"]\n",
@ -234,31 +262,34 @@
}
}
},
{
"cell_type": "markdown",
"source": [
"Per continuare gli esperimenti, prendiamo il primo dataflow tra quelli contenenti `\"student\"` nel label:"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 7,
"outputs": [
{
"data": {
"text/plain": "(<DataflowDefinition ESTAT:educ_enrl1ad(1.0): Students by ISCED level, study intensity and sex>,\n <DataStructureDefinition ESTAT:DSD_educ_enrl1ad(1.0): DSWS Data Structure Definition>)"
"text/plain": "'educ_enrl1ad'"
},
"execution_count": 12,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Prendiamo il primo e andiamo a scaricare i dati corrispondenti\n",
"my_flow_label = student_flows.index[0]\n",
"# Scarichiamo lo specifico dataflow che ci interessa\n",
"my_flow_msg: pandasdmx.message.Message = eurostat.dataflow(my_flow_label)\n",
"my_flow: pandasdmx.model.DataflowDefinition = my_flow_msg.dataflow[my_flow_label]\n",
"# Scopriamo il label della struttura dati\n",
"my_struct_label: pandasdmx.source.DataStructureDefinition = my_flow.structure.id\n",
"# Scarichiamo la struttura del dataflow\n",
"my_struct_msg: pandasdmx.message.Message = eurostat.datastructure(my_struct_label)\n",
"my_struct: pandasdmx.source.DataStructureDefinition = my_struct_msg.structure[my_struct_label]\n",
"my_flow, my_struct"
"my_flow_label"
],
"metadata": {
"collapsed": false,
@ -267,25 +298,119 @@
}
}
},
{
"cell_type": "markdown",
"source": [
"Usiamo il label per chiamare di nuovo `.dataflow()`, specificando però stavolta il dataflow di cui ci interessano i dettagli:"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 8,
"outputs": [
{
"data": {
"text/plain": "([],\n <MeasureDescriptor: <PrimaryMeasure OBS_VALUE>>,\n <AttributeDescriptor: <DataAttribute OBS_FLAG>; <DataAttribute OBS_STATUS>>,\n <DimensionDescriptor: <Dimension FREQ>; <Dimension UNIT>; <Dimension ISCED97>; <Dimension SEX>; <Dimension WORKTIME>; <Dimension GEO>; <TimeDimension TIME_PERIOD>>)"
"text/plain": "<DataflowDefinition ESTAT:educ_enrl1ad(1.0): Students by ISCED level, study intensity and sex>"
},
"execution_count": 14,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"my_flow_msg: pandasdmx.message.Message = eurostat.dataflow(my_flow_label)\n",
"my_flow: pandasdmx.model.DataflowDefinition = my_flow_msg.dataflow[my_flow_label]\n",
"my_flow"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"> __Structure__: metadati su come sono strutturate le misure di un dataflow (cosa è stato misurato, quali filtri è possibile applicare, note, etc)\n",
"\n",
"_Particolarità di Eurostat: la structure va richiesta separatamente dal dataflow, in quanto tutti i campi a parte `id` di `dataflow.structure` sono sempre vuoti._\n",
"\n",
"Scopriamo prima il label della structure, poi scarichiamo da Eurostat la structure del dataflow che ci interessa con il metodo `.datastructure()`:"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 9,
"outputs": [
{
"data": {
"text/plain": "<DataStructureDefinition ESTAT:DSD_educ_enrl1ad(1.0): DSWS Data Structure Definition>"
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"my_struct_label: pandasdmx.source.DataStructureDefinition = my_flow.structure.id\n",
"my_struct_msg: pandasdmx.message.Message = eurostat.datastructure(my_struct_label)\n",
"my_struct: pandasdmx.source.DataStructureDefinition = my_struct_msg.structure[my_struct_label]\n",
"my_struct"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"Ispezioniamo la structure che abbiamo scaricato, visualizzandola contemporaneamente [sul Data Explorer di Eurostat](https://ec.europa.eu/eurostat/databrowser/view/educ_enrl1ad/default/table?lang=en)\n",
"\n",
"> __Measures__: valori aggregati relativi alle misure effettuate, simili a `COUNT(*)` dell'SQL\n",
"\n",
"> __Dimensions__: filtri applicabili ai dati raccolti in modo simile all'`HAVING` dell'SQL\n",
"\n",
"> __Attributes__: ???\n",
"\n",
"> __Annotations__: commenti che possono essere aggiunti al dataflow"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [
{
"data": {
"text/plain": "([],\n <MeasureDescriptor: <PrimaryMeasure OBS_VALUE>>,\n <AttributeDescriptor: <DataAttribute OBS_FLAG>; <DataAttribute OBS_STATUS>>,\n <DimensionDescriptor: <Dimension FREQ>; <Dimension UNIT>; <Dimension ISCED97>; <Dimension SEX>; <Dimension WORKTIME>; <Dimension GEO>; <TimeDimension TIME_PERIOD>>)"
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Ispezioniamo la struttura, che contiene:\n",
"# - annotazioni\n",
"# - misure\n",
"# - attributi\n",
"# - dimensioni\n",
"my_struct.annotations, my_struct.measures, my_struct.attributes, my_struct.dimensions"
],
"metadata": {
@ -294,6 +419,79 @@
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"Infine, richiediamo i dati da Eurostat, limitandoli a quelli dell'`IT`alia dal 2010 in poi e selezionando solo il `WORKTIME` `TOTAL`, e convertiamoli in una Series multi-chiave:"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 28,
"outputs": [
{
"data": {
"text/plain": "FREQ UNIT ISCED97 SEX WORKTIME GEO TIME_PERIOD\nA NR ED0 F TOTAL IT 2010 808706.0\n 2011 811615.0\n 2012 815656.0\n M TOTAL IT 2010 872281.0\n 2011 876225.0\n ... \n UNK M TOTAL IT 2011 NaN\n 2012 NaN\n T TOTAL IT 2010 NaN\n 2011 NaN\n 2012 NaN\nName: value, Length: 279, dtype: float64"
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"my_data_msg: pandasdmx.message.Message = eurostat.data(my_flow_label, key={\"GEO\": \"IT\", \"WORKTIME\": \"TOTAL\"}, params={\"startPeriod\": \"2010\"})\n",
"my_data: pandas.Series = my_data_msg.to_pandas()\n",
"my_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"Abbiamo ricevuto i dati, e possiamo manipolarli come una qualsiasi series di `pandas` (le quali sono molto simili a tabelle SQL in-memory):"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 30,
"outputs": [
{
"data": {
"text/plain": "SEX TIME_PERIOD\nF 2010 808706.0\n 2011 811615.0\n 2012 815656.0\nM 2010 872281.0\n 2011 876225.0\n 2012 879256.0\nT 2010 1680987.0\n 2011 1687840.0\n 2012 1694912.0\nName: value, dtype: float64"
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Il numero di studenti [M]aschi, [F]emmine e [T]otali in Italia nel [2010], [2011] e [2012]\n",
"my_data.groupby([\"SEX\", \"TIME_PERIOD\"]).first()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {