`)))),l(u.a,null,"Serve solo nella teoria per dimostrare che le forme sono equivalenti.")),l(o.a,{title:"Canonica e standard"},l("p",null,"Aggiungi una ",l("i",null,"variabile slack")," ",l(a.a,null,yl(tl||(tl=Cl`s`)))," ",l("b",null,"non-vincolata")," a ogni disequazione nel sistema:"),l("p",null,l(a.a,{inline:!1},yl(al||(al=Cl`
a\leqb\Leftrightarrowa+s=b
`)))),l("p",null,l(a.a,{inline:!1},yl(ol||(ol=Cl`
a\geqb\Leftrightarrowa-s=b
`))))),l(o.a,{title:"Generale e canonica"},l("p",null,"Sdoppia ogni variabile non-vincolata in due variabili con vincolo di non-negatività:"),l("p",null,l(a.a,{inline:!1},yl(ul||(ul=Cl`\begin{cases}
a=a^+-a^-\\
a^+\geq0\\
a^-\geq0
\end{cases}`)))))),l(t.a,{title:"La forma standard"},l(o.a,{title:"Tableau"},l("p",null,"Un modo per rappresentare sistemi in forma standard, anche noto come ",l("b",null,"matrice equivalente completa")," del sistema."),l(u.a,null,"Il sistema:",l("br",null),l("br",null),l(a.a,{inline:!1},yl(rl||(rl=Cl`
\begin{cases}
2000x_1+1000x_2=z\\
1x_1\leq3\\
1x_2\leq3\\
2x_1+2x_2\leq7
\end{cases}
`))),l("br",null),l("br",null),"Diventa il tableau:",l("br",null),l("br",null),l("table",{class:"right"},l("thead",null,l("tr",null,l("th",null,l("abbr",{title:"Termine noto"},"TN")),l("th",null,l(a.a,null,"x_1")),l("th",null,l(a.a,null,"x_2")),l("th",null,l(a.a,null,"s_1")),l("th",null,l(a.a,null,"s_2")))),l("tbody",null,l("tr",null,l("td",null,l(a.a,null,"z")),l("td",null,l(a.a,null,"2000")),l("td",null,l(a.a,null,"1000")),l("td",null,l(a.a,null,"0")),l("td",null,l(a.a,null,"0"))),l("tr",null,l("td",null,l(a.a,null,"3")),l("td",null,l(a.a,null,"1")),l("td",null,l(a.a,null,"0")),l("td",null,l(a.a,null,"1")),l("td",null,l(a.a,null,"0"))),l("tr",null,l("td",null,l(a.a,null,"3")),l("td",null,l(a.a,null,"0")),l("td",null,l(a.a,null,"1")),l("td",null,l(a.a,null,"0")),l("td",null,l(a.a,null,"1"))),l("tr",null,l("td",null,l(a.a,null,"7")),l("td",null,l(a.a,null,"2")),l("td",null,l(a.a,null,"2")),l("td",null,l(a.a,null,"0")),l("td",null,l(a.a,null,"0"))))))),l(o.a,{title:"Variabili nella base"},l("p",null,"Variabili che hanno ",l("b",null,"tutti 0 e un solo 1")," nella loro colonna del tableau."),l("p",null,"La loro controparte sono le ",l("i",null,"variabili fuori base"),", che hanno qualsiasi altro valore."))),l(t.a,{title:"Simplex primale"},l(o.a,{title:"Cos'è?"},l("p",null,"Un algoritmo per ",l(m.a,null,"minimizzare"),"/",l(f.a,null,"massimizzare")," trovare efficientemente ",l("b",null,"valore ottimo")," di problemi di ottimizzazione lineare, derivato da Gauss-Jordan."),l("p",null,"Da esso si può anche ricavare un ",l("b",null,"vertice ottimo ammissibile"),".",l("br",null),"C'è la possibilità che ne esistano anche altri: quello ottenuto dipende da come è stata effettuata la scelta delle variabili entranti."),l(u.a,null,"E' spiegato in modo semplice ",l("a",{href:"https://web.archive.org/web/20200523052252/https://www.cs.cmu.edu/~15451-f17/handouts/simplex.pdf"},"qui"),", e ci sono dei codici sorgenti di esempio ",l("a",{href:"https://www.cs.cmu.edu/~15451-f17/handouts/simplexcodes/"},"qui"),"."),l(u.a,{title:"Esempio"},l("p",null,l("a",{href:"https://i.imgur.com/1r405Mb.jpg"},"Questa")," è la soluzione passo per passo del problema 3 del file ",l("a",{href:"https://dolly.fim.unimore.it/2019/mod/resource/view.php?id=2716"},l("code",null,"Ex_LP_testo")),"."))),l(o.a,{title:"I passi"},l("ol",null,l("li",null,"Trasforma il sistema in ",l("b",null,"forma standard"),"."),l("li",null,"Trova tante variabili ",l("b",null,"linearmente indipendenti")," quante siano le righe: esse saranno la ",l("i",null,"base iniziale"),"."),l("li",null,"Finchè ci sono variabili con coefficienti ",l(m.a,null,"positivi"),"/",l(f.a,null,"negativi")," nella funzione obiettivo:",l("ol",null,l("li",null,l("b",null,"Scegli")," la prima variabile fuori base con coefficiente ",l(m.a,null,"positivo"),"/",l(f.a,null,"negativo")," nella funzione obiettivo: essa è la ",l("i",null,"variabile entrante"),".",l("br",null),l("aside",null,l("i",null,"Regola di Bland"),": Si potrebbe scegliere qualsiasi variabile come entrante, ma scegliendo sempre la prima ammissibile ci si assicura che l'algoritmo termini.")),l("li",null,l("b",null,"Scegli")," la variabile in base con il minor rapporto positivo ",l(a.a,null,yl(sl||(sl=Cl`\frac{termine\noto}{coeff.\variabile\entrante}`))),".",l("aside",null,"Se non sei riuscito a trovare nessuna variabile con un rapporto positivo, significa che il poliedro è ",l(d.a,null),".")),l("li",null,l("u",null,"Pivot"),": ",l("b",null,"riscrivi")," tutte le funzioni del sistema in termini della variabile entrante."))),l("li",null,"Il poliedro è ",l(_.a,null),": i ",l("b",null,"termini noti dei vincoli")," sono le coordinate del suo vertice ottimo, mentre il ",l("b",null,"termine noto della funzione obiettivo")," è il valore ottimo.")),l(u.a,null,"È praticamente l'algoritmo di Gauss-Jordan applicato al tableau, con delle regole aggiuntive per la decisione delle variabili di pivot.")),l(o.a,{title:"Soluzioni di base degenerata"},l("p",null,"Una soluzione con almeno una variabile di valore ",l(a.a,null,"0
`)))))),l(t.a,{title:"Dualità"},l(o.a,{title:"Duale"},l("p",null,"Il sistema che ",l("b",null,l(m.a,null,"massimizza"),"/",l(f.a,null,"minimizza")," i moltiplicatori di rilassamento")," di un problema detto ",l("i",null,"primale"),".")),l(o.a,{title:"In termini matriciali"},l("p",null,"Possiamo ",l("b",null,"trasporre")," il tableau e sostituire le variabili ",l(a.a,null,yl(bl||(bl=Cl`x_n`)))," con variabili ",l(a.a,null,yl(hl||(hl=Cl`u_n`)))," per ottenere il sistema duale!"),l("p",null,"I maggiori e minori dei vincoli diventeranno maggiori e minori delle variabili e viceversa.")),l(o.a,{title:"Feasibility del duale"},l("ul",null,l("li",null,"Se un problema ha una ",l("b",null,"soluzione finita"),", allora anche il suo duale la avrà."),l("li",null,"Se un problema è ",l("b",null,l(c.a,null)),", allora il suo duale potrà essere ",l(c.a,null)," oppure ",l(d.a,null),"."),l("li",null,"Se un problema è ",l("b",null,l(d.a,null)),", allora il suo duale sarà certamente ",l(c.a,null),".")))),l(t.a,{title:"Un po' di teoria"},l(o.a,{title:"Lemma di Farkas"},l("p",null,"Una disuguaglianza lineare ",l(a.a,null,yl(pl||(pl=Cl`c_0\leq\mathbf{c}^T\mathbf{x}`)))," è verificata da tutti i punti di un poliedro non-",l(c.a,null)," se e solo se esiste un vettore ",l(a.a,null,yl(_l||(_l=Cl`u\in\mathfrak{R}^m`)))," tale che:"),l(b.a,null,yl(vl||(vl=Cl`\mathbf{c}^T\geq\mathbf{u}^T\mathbf{A}`))),l(b.a,null,yl(gl||(gl=Cl`c_0\leq\mathbf{u}^T\mathbf{b}`))),l("p",null,l(r.a,null,"TODO: Cioè?"))),l(o.a,{title:"Dualità forte"},l("p",null,"Il teorema che dimostra l'equivalenza tra primale e duale."),l("p",null,"Se uno dei due problemi è finito, la soluzione di uno coincide con la soluzione dell'altro."),l("p",null,l(a.a,null,yl(zl||(zl=Cl`\mathbf{c}^T\mathbf{x}=\mathbf{u}^T\mathbf{b}`)))),l("p",null,l(r.a,null,"TODO: Anche qui c'è una lunga dimostrazione..."))),l(o.a,{title:"Dualità debole"},l("p",null,"Il teorema che dimostra che il valore della funzione obiettivo del duale (di un qualsiasi tableau) è sempre ",l(m.a,null,"minore o uguale"),"/",l(f.a,null,"maggiore o uguale")," alla soluzione del corrispettivo primale."),l("p",null,l(r.a,null,"TODO: Dimostrazione cortina, ma sembra complicata."))),l(o.a,{title:"Condizioni di ottimalità"},l("p",null,"Il teorema che ci permette di passare dalla soluzione del duale alla soluzione del primale. ",l(r.a,null,"TODO: credo?")),l("p",null,"Si deriva combinando le seguenti condizioni:"),l("ul",null,l("li",null,"Ammissibilità del primale: ",l(a.a,null,yl(xl||(xl=Cl`\mathbf{A}\mathbf{X}\geq\mathbf{b},\quad\mathbf{x}\geq0`)))),l("li",null,"Ammissibilità del duale: ",l(a.a,null,yl(ql||(ql=Cl`\mathbf{u}^T\mathbf{A}\leq\mathbf{c}^T,\quad\mathbf{u}\geq0`)))),l("li",null,"Teorema della dualità forte: ",l(a.a,null,yl(wl||(wl=Cl`\mathbf{c}^T\mathbf{x}=\mathbf{u}^T\mathbf{b}`)))," (alla soluzione ottima)")),l("p",null,"Ne risulta che una soluzione è ottima se e solo se:"),l(b.a,null,yl(Ll||(Ll=Cl`\left(\mathbf{c}^T-\mathbf{u}^T\mathbf{A}\right)\mathbf{x}=0`))),l(b.a,null,yl(Tl||(Tl=Cl`\mathbf{u}^T\left(\mathbf{A}\mathbf{x}-\mathbf{b}\right)=0`))))),l(t.a,{title:"Simplex duale"},l(o.a,{title:"Cos'è?"},l("p",null,"Un'estensione al Simplex primale che opera sul problema duale.")),l(o.a,{title:"Come funziona?"},l("p",null,"Funziona esattamente come il Simplex primale, ma opera sulle righe invece che sulle colonne, cercando di rendere ",l(m.a,null,"positivi"),"/",l(f.a,null,"negativi")," tutti i termini noti."))),l(t.a,{title:"Analisi di sensibilità"},l(o.a,{title:"Cos'è?"},l("p",null,"Un procedimento che misura di ",l("b",null,"quanto può variare")," il termine noto di un vincolo ",l(a.a,null,yl(Sl||(Sl=Cl`b_i`)))," o il coefficiente della funzione obiettivo ",l(a.a,null,yl(Il||(Il=Cl`c_i`)))," prima che la base degeneri. ",l(r.a,null,"TODO: verificare")))))}}}.call(this,i("hosL").h)},imVn:function(l,n,i){"use strict";(function(l){var e=i("OmdA"),t=i.n(e),a=i("Y9Ml");n.a=function(n){return l(a.a,{color:n.color},l("h3",{class:t.a