1
Fork 0
mirror of https://github.com/Steffo99/unisteffo.git synced 2024-11-26 09:54:19 +00:00
triennale-appunti-steffo/src/routes/OttimizzazioneLineare.js

1032 lines
53 KiB
JavaScript
Raw Normal View History

2020-07-13 14:44:15 +00:00
import {
Section,
Latex,
Panel,
Todo,
Timer,
PLatex,
TablePanel,
LatexDefaultInline,
ILatex,
BLatex,
2020-07-14 14:04:51 +00:00
BaseLink, Image
2020-07-13 14:44:15 +00:00
} from "bluelib";
2020-06-18 17:46:40 +00:00
import Example from "../components/Example";
2020-06-18 15:23:31 +00:00
import Empty from "../components/OttimizzazioneLineare/Empty";
import Unbounded from "../components/OttimizzazioneLineare/Unbounded";
2020-06-18 17:46:40 +00:00
import Finite from "../components/OttimizzazioneLineare/Finite";
2020-06-18 15:23:31 +00:00
import Min from "../components/OttimizzazioneLineare/Min";
import Max from "../components/OttimizzazioneLineare/Max";
2020-07-13 14:44:15 +00:00
import Plus from "../components/Fisica/Plus";
import Minus from "../components/Fisica/Minus";
import ExampleBoxColor from "../components/ExampleBoxColor";
2020-07-14 14:04:51 +00:00
import Link from "../components/Link";
2020-03-09 23:19:30 +00:00
const r = String.raw;
2020-03-09 23:18:13 +00:00
2020-06-18 17:46:40 +00:00
2020-05-28 17:58:41 +00:00
export default function(props) {
return (
<div>
<h1>Ottimizzazione lineare intera</h1>
<Section title={"Informazioni"}>
<Panel title={"Contatti"}>
<ul>
<li><a href={"mailto:stefano.novellani@unimore.it"}>Prof. Stefano Novellani</a></li>
</ul>
</Panel>
<Panel title={"Archivio"}>
2020-05-28 17:58:41 +00:00
<p>
Se sei uno <b>studente dell'Unimore</b>, puoi accedere all'<b><a href={"https://drive.google.com/drive/folders/13q-E6LvXca9uo3sATMZxrhJClqMB0wJu"}>archivio del corso su Google Drive</a></b>.
2020-05-28 17:58:41 +00:00
</p>
</Panel>
</Section>
<Section title={"Esame"}>
<Panel title={"Scritto"}>
2020-05-28 17:58:41 +00:00
<p>
Uno scritto con tre domande:
2020-05-28 17:58:41 +00:00
</p>
<ul>
<li>Progettazione concettuale e logica</li>
<li>Formulazione interrogazione</li>
<li>Una domanda tra:
<ul>
<li>Studio dato derivato</li>
<li>Progettazione fisica</li>
<li>Tecnologia database</li>
</ul>
</li>
</ul>
2020-05-28 17:58:41 +00:00
</Panel>
<Panel title={"Appelli"}>
2020-05-28 17:58:41 +00:00
<ol>
2020-07-03 15:08:40 +00:00
<li><Timer to={"2020-06-08 09:00"}/></li>
<li><Timer to={"2020-06-25 09:00"}/></li>
<li><Timer to={"2020-07-16 09:00"}/></li>
2020-05-28 17:58:41 +00:00
</ol>
</Panel>
</Section>
<LatexDefaultInline.Provider value={false}>
<Section title={"Glossario"}>
2020-06-09 15:17:26 +00:00
<TablePanel>
<thead>
<tr>
<th><abbr title={"Vettore / matrice"}>v</abbr></th>
<th><abbr title={"Elemento singolo"}>s</abbr></th>
<th>Significato</th>
</tr>
</thead>
<tbody>
<tr>
<td><Latex>{r`\mathbf{x}`}</Latex></td>
<td><Latex>{r`x_i`}</Latex></td>
<td>Incognite</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{s}`}</Latex></td>
<td><Latex>{r`s_i`}</Latex></td>
<td>Variabili slack</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{c}`}</Latex></td>
<td><Latex>{r`c_i`}</Latex></td>
<td>Coefficienti della funzione obiettivo</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{A}`}</Latex></td>
<td><Latex>{r`a_{ij}`}</Latex></td>
<td>Coefficienti dei vincoli</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{b}`}</Latex></td>
<td><Latex>{r`b_i`}</Latex></td>
<td>Termini noti dei vincoli</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{y}`}</Latex></td>
<td><Latex>{r`y_i`}</Latex></td>
<td>Incognite artificiali</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{u}`}</Latex></td>
<td><Latex>{r`u_i`}</Latex></td>
<td>Coefficienti di rilassamento</td>
</tr>
<tr>
<td/>
<td><Latex>{r`c_0`}</Latex></td>
<td>Valore ottimo di un problema</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{x}_B`}</Latex></td>
<td/>
<td>Incognite in base</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{c}_B`}</Latex></td>
<td/>
<td>Coefficienti della funzione obiettivo delle variabili in base</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{B}`}</Latex></td>
<td/>
<td>Coefficienti dei vincoli delle variabili in base</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{x}_F`}</Latex></td>
<td/>
<td>Incognite fuori base</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{c}_F`}</Latex></td>
<td/>
<td>Coefficienti della funzione obiettivo delle variabili fuori base</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{F}`}</Latex></td>
<td/>
<td>Coefficienti dei vincoli delle variabili fuori base</td>
</tr>
</tbody>
</TablePanel>
<TablePanel>
<thead>
<tr>
<th>Simboli</th>
<th>Significato</th>
</tr>
</thead>
<tbody>
<tr>
<td><Latex>{r`\mathbf{c}^T \mathbf{x}`}</Latex></td>
<td>Soluzione del problema</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{A} \mathbf{x} = \mathbf{b}`}</Latex></td>
<td>Vincoli in forma standard</td>
</tr>
<tr>
<td><Latex>{r`z(\dots)`}</Latex></td>
<td>Funzione obiettivo</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{u}^T \mathbf{b}`}</Latex></td>
<td>Soluzione del problema duale</td>
</tr>
<tr>
<td><Latex>{r`\mathbf{u}^T \mathbf{A} = \mathbf{c}^T`}</Latex></td>
<td>Vincoli del problema duale in forma standard</td>
</tr>
2020-07-03 15:08:40 +00:00
<tr>
<td><Latex>{r`\lfloor x \rfloor`}</Latex></td>
<td>Arrotondamento per difetto di x</td>
</tr>
<tr>
<td><Latex>{r`\lceil x \rceil`}</Latex></td>
<td>Arrotondamento per eccesso di x</td>
</tr>
<tr>
<td><Latex>{r`x - \lfloor x \rfloor`}</Latex></td>
<td>Parte frazionaria di x (se non è negativo)</td>
</tr>
2020-06-09 15:17:26 +00:00
</tbody>
</TablePanel>
2020-05-28 17:58:41 +00:00
</Section>
</LatexDefaultInline.Provider>
<Section title={"Problemi di ottimizzazione lineare"}>
<Panel title={"Cosa sono?"}>
<p>
2020-07-03 15:08:40 +00:00
Problemi che cercano di <Min>minimizzare</Min>/<Max>massimizzare</Max> il valore di una <i>funzione obiettivo</i> le cui incognite sono sottoposte a un <b>sistema di <i>vincoli</i></b>.
</p>
<p>
Spesso sono detti anche <i>problemi di <abbr title={"Linear Programming"}>LP</abbr></i>.
2020-05-28 17:58:41 +00:00
</p>
</Panel>
<Panel title={"Funzione obiettivo"}>
<p>
La funzione da <Min>minimizzare</Min>/<Max>massimizzare</Max>.
</p>
<p>
Il vettore dei suoi coefficienti è detto <Latex>{r`\mathbf{c}`}</Latex>, mentre quello delle sue incognite <Latex>{r`\mathbf{x}`}</Latex>.
</p>
2020-07-13 14:44:15 +00:00
<p>
In genere, la funzione obiettivo è scritta in questa forma:
</p>
<p>
<Latex>{r`z(\mathbf{x}) = c_1 \cdot x_1 + c_2 \cdot x_2 + \dots + c_n \cdot x_n`}</Latex>
</p>
2020-05-28 17:58:41 +00:00
</Panel>
2020-07-13 14:44:15 +00:00
<Panel title={"Gradiente"}>
2020-05-28 17:58:41 +00:00
<p>
2020-07-13 14:44:15 +00:00
<b>Funzione</b> della funzione obiettivo che restituisce la direzione del suo aumento più veloce.
2020-05-28 17:58:41 +00:00
</p>
<p>
2020-07-13 14:44:15 +00:00
<Latex>{r`\nabla (f) = \frac{d f}{d x_1} I_1 + \frac{d f}{d x_2} I_2 + \frac{d f}{d x_n} I_n`}</Latex>
2020-05-28 17:58:41 +00:00
</p>
2020-07-13 14:44:15 +00:00
<Example>
La matrice <Latex>{r`\mathbf{I}`}</Latex> è la matrice identità.
</Example>
<Example>
Se la funzione obiettivo è <Latex>z = 2w + 3x + 4y</Latex>, il suo gradiente è <Latex>{r`\nabla z = (2, 3, 4)`}</Latex>.
</Example>
2020-05-28 17:58:41 +00:00
</Panel>
2020-07-13 14:44:15 +00:00
<Panel title={"Vincoli"}>
2020-05-28 17:58:41 +00:00
<p>
2020-07-13 14:44:15 +00:00
Equazioni e disequazioni a cui devono sottostare le incognite perchè esse formino una soluzione valida.
2020-05-28 17:58:41 +00:00
</p>
<p>
2020-07-13 14:44:15 +00:00
I loro coefficienti sono contenuti nella matrice <Latex>{r`\mathbf{A}`}</Latex>, mentre i loro termini noti nel vettore <Latex>{r`\mathbf{b}`}</Latex>.
2020-05-28 17:58:41 +00:00
</p>
</Panel>
<Panel title={"Poliedro"}>
<p>
L'<b>insieme</b> che racchiunde tutte le <b>soluzioni ammissibili</b> di un problema.
</p>
<p>
Può essere <i><Finite/></i>, <i><Empty/></i> oppure <i><Unbounded/></i>.
</p>
2020-07-03 15:08:40 +00:00
<Example>
Si chiama così perchè se si disegna su un piano cartesiano, esso forma una figura geometrica a più lati, ovvero un <a href={"https://it.wikipedia.org/wiki/Poliedro"}>poliedro</a>.
</Example>
2020-05-28 17:58:41 +00:00
</Panel>
2020-07-13 14:44:15 +00:00
<Panel title={"Valore ottimo"}>
2020-05-28 17:58:41 +00:00
<p>
2020-07-13 14:44:15 +00:00
La <b>soluzione</b> di un problema, ricavabile dal prodotto <Latex>{r`\mathbf{c}^T \mathbf{x}`}</Latex>.
2020-05-28 17:58:41 +00:00
</p>
<p>
2020-07-13 14:44:15 +00:00
In particolare, il valore ottimo è un <b>vertice</b> del poliedro, detto <i>vertice ottimo</i>.
2020-05-28 17:58:41 +00:00
</p>
</Panel>
</Section>
<Section title={"Forme di un problema di ottimizzazione"}>
<Panel title={"Forma generale"}>
<p>
Un problema con:
</p>
<ul>
2020-07-13 14:44:15 +00:00
<li><Plus>Equazioni e disequazioni</Plus></li>
<li><Plus>Variabili non vincolate</Plus></li>
2020-05-28 17:58:41 +00:00
</ul>
<PLatex>{r`min \left\{ \mathbf{c}^T \mathbf{x} : \mathbf{A} \mathbf{x} = b,\quad \mathbf{A'} \mathbf{x} \geq \mathbf{b'} \quad x_j \geq 0,\quad j = 1 \dots n \right\}`}</PLatex>
</Panel>
<Panel title={"Forma canonica"}>
<p>
Un problema con:
</p>
<ul>
2020-07-13 14:44:15 +00:00
<li><Plus>Solo disequazioni</Plus></li>
<li><Minus>Vincoli di non-negatività sulle incognite</Minus></li>
2020-05-28 17:58:41 +00:00
</ul>
<PLatex>{r`min \left\{ \mathbf{c}^T \mathbf{x} : \mathbf{A} \mathbf{x} \geq b,\quad x_j \geq 0,\quad j = 1 \dots n \right\}`}</PLatex>
</Panel>
<Panel title={"Forma standard"}>
<p>
Un problema con:
</p>
<ul>
2020-07-13 14:44:15 +00:00
<li><Minus>Solo equazioni</Minus></li>
<li><Minus>Vincoli di non-negatività sulle incognite</Minus></li>
2020-05-28 17:58:41 +00:00
</ul>
<PLatex>{r`min \left\{ \mathbf{c}^T \mathbf{x} : \mathbf{A} \mathbf{x} = b,\quad x_j \geq 0,\quad j = 1 \dots n \right\}`}</PLatex>
</Panel>
</Section>
<Section title={"Conversioni tra le forme"}>
<Panel title={"Standard e generale"}>
<p>
Applica questa conversione a ogni equazione nel sistema:
</p>
<p>
<Latex inline={false}>{r`a = b \Leftrightarrow
\begin{cases}
a \leq b\\
a \geq b
\end{cases}
`}</Latex>
</p>
<Example>Serve solo nella teoria per dimostrare che le forme sono equivalenti.</Example>
</Panel>
<Panel title={"Canonica e standard"}>
<p>
Aggiungi una <i>variabile slack</i> <Latex>{r`s`}</Latex> <b>non-vincolata</b> a ogni disequazione nel sistema:
</p>
<p>
<Latex inline={false}>{r`
a \leq b \Leftrightarrow a + s = b
`}</Latex>
</p>
<p>
<Latex inline={false}>{r`
a \geq b \Leftrightarrow a - s = b
`}</Latex>
</p>
</Panel>
<Panel title={"Generale e canonica"}>
<p>
Sdoppia ogni variabile non-vincolata in due variabili con vincolo di non-negatività:
</p>
<p>
<Latex inline={false}>{r`\begin{cases}
a = a^+ - a^-\\
a^+ \geq 0\\
a^- \geq 0
\end{cases}`}</Latex>
</p>
</Panel>
</Section>
2020-07-13 14:44:15 +00:00
<Section>
Valore attuale
</Section>
<Section title={"Tableau"}>
<Panel title={"Cos'è?"}>
2020-05-28 17:58:41 +00:00
<p>
Un modo per rappresentare sistemi in forma standard, anche noto come <b>matrice equivalente completa</b> del sistema.
</p>
2020-07-13 14:44:15 +00:00
</Panel>
<Panel title={"Trasformazioni"}>
<p>
Un tableau è un sistema di equazioni in <b>forma matriciale completa</b>.
</p>
<p>
È possibile effettuare senza che cambi il risultato finale le seguenti trasformazioni:
</p>
<ul>
<li><b>Moltiplicare</b> un'intera riga per una costante.</li>
<li><b>Sommare</b> una riga a un'altra</li>
</ul>
2020-05-28 17:58:41 +00:00
<Example>
2020-07-13 14:44:15 +00:00
Suona familiare? , lo abbiamo fatto anche in Algebra Lineare.
2020-05-28 17:58:41 +00:00
</Example>
</Panel>
<Panel title={"Variabili nella base"}>
<p>
Variabili che hanno <b>tutti 0 e un solo 1</b> nella loro colonna del tableau.
</p>
<p>
La loro controparte sono le <i>variabili fuori base</i>, che hanno qualsiasi altro valore.
</p>
</Panel>
2020-07-13 14:44:15 +00:00
<Panel title={"Valore attuale"}>
<p>
Il valore della funzione obiettivo che si otterrebbe se <b>tutte le variabili fuori base valessero 0</b>.
</p>
<p>
Procedendo nella risoluzione (descritta in seguito) del tableau, questo valore aumenterà, fino a raggiungere il valore ottimo quando la risoluzione sarà completata.
</p>
</Panel>
2020-05-28 17:58:41 +00:00
</Section>
2020-07-13 14:44:15 +00:00
<Section>
<Panel color={ExampleBoxColor} title={"Un esempio"}>
2020-05-28 17:58:41 +00:00
<p>
2020-07-13 14:44:15 +00:00
Il sistema:
2020-05-28 17:58:41 +00:00
</p>
2020-07-13 14:44:15 +00:00
<PLatex>{r`
\begin{cases}
2000x_1 + 1000x_2 = z\\
1x_1 \leq 3\\
1x_2 \leq 3\\
2x_1 + 2x_2 \leq 7
\end{cases}
`}</PLatex>
2020-05-28 17:58:41 +00:00
<p>
2020-07-13 14:44:15 +00:00
Diventa il tableau:
</p>
<table className={"right"}>
<thead>
<tr>
<th><Latex>x_1</Latex></th>
<th><Latex>x_2</Latex></th>
<th><Latex>s_1</Latex></th>
<th><Latex>s_2</Latex></th>
<th><Latex>s_3</Latex></th>
<th><abbr title={"Termine noto"}>TN</abbr></th>
</tr>
</thead>
<tbody>
<tr>
<td><Latex>1</Latex></td>
<td><Latex>0</Latex></td>
<td style={"background-color: rgba(0, 0, 255, 0.1);"}><Latex>1</Latex></td>
<td style={"background-color: rgba(0, 0, 255, 0.1);"}><Latex>0</Latex></td>
<td style={"background-color: rgba(0, 0, 255, 0.1);"}><Latex>0</Latex></td>
<td style={"background-color: rgba(255, 0, 0, 0.1);"}><Latex>3</Latex></td>
</tr>
<tr>
<td><Latex>0</Latex></td>
<td><Latex>1</Latex></td>
<td style={"background-color: rgba(0, 0, 255, 0.1);"}><Latex>0</Latex></td>
<td style={"background-color: rgba(0, 0, 255, 0.1);"}><Latex>1</Latex></td>
<td style={"background-color: rgba(0, 0, 255, 0.1);"}><Latex>0</Latex></td>
<td style={"background-color: rgba(255, 0, 0, 0.1);"}><Latex>3</Latex></td>
</tr>
<tr>
<td><Latex>2</Latex></td>
<td><Latex>2</Latex></td>
<td style={"background-color: rgba(0, 0, 255, 0.1);"}><Latex>0</Latex></td>
<td style={"background-color: rgba(0, 0, 255, 0.1);"}><Latex>0</Latex></td>
<td style={"background-color: rgba(0, 0, 255, 0.1);"}><Latex>1</Latex></td>
<td style={"background-color: rgba(255, 0, 0, 0.1);"}><Latex>7</Latex></td>
</tr>
<tr style={"background-color: rgba(0, 255, 0, 0.1);"}>
<td><Latex>2000</Latex></td>
<td><Latex>1000</Latex></td>
<td><Latex>0</Latex></td>
<td><Latex>0</Latex></td>
<td><Latex>0</Latex></td>
<td style={"background-color: rgba(255, 255, 0, 0.2);"}><Latex>0</Latex></td>
</tr>
</tbody>
</table>
<ul>
<li>
<u style={"color: #7dff7d;"}>Verde</u>: funzione obiettivo
</li>
<li>
<u style={"color: #ffff7d;"}>Giallo</u>: valore attuale della funzione
</li>
<li>
<u style={"color: #ff7d7d;"}>Rosso</u>: termini noti
</li>
<li>
<u style={"color: #7d7dff;"}>Blu</u>: Variabili slack
</li>
</ul>
</Panel>
</Section>
<Section title={"Simplex primale"}>
<Panel title={"Cos'è?"}>
<p>
Un algoritmo per trovare efficientemente il <b>valore ottimo</b> e le coordinate di un <b>vertice ottimo</b> in problemi di ottimizzazione lineare.
2020-05-28 17:58:41 +00:00
</p>
<Example>
2020-07-13 14:44:15 +00:00
Ricordi <BaseLink href={"/vldigeometria"}>Gauss-Jordan</BaseLink>? Il Simplex è la stessa cosa, aggiungendo criteri per la selezione del pivot.
2020-05-28 17:58:41 +00:00
</Example>
<Example title={"Esempio"}>
2020-07-13 14:44:15 +00:00
<a href={"https://i.imgur.com/1r405Mb.jpg"}>Questa</a> è la soluzione passo per passo del problema 3 del file <a href={"https://dolly.fim.unimore.it/2019/mod/resource/view.php?id=2716"}><code>Ex_LP_testo</code></a>.
2020-05-28 17:58:41 +00:00
</Example>
2020-07-13 14:44:15 +00:00
<p>
Perchè sia possibile effettuare il Simplex è necessario che l'<b>origine sia nel poliedro</b>: pertanto, <b>non</b> è possibile che un problema risolto con il Simplex sia <Empty/>.
</p>
2020-05-28 17:58:41 +00:00
</Panel>
<Panel title={"I passi"}>
<ol>
<li>Trasforma il sistema in <b>forma standard</b>.</li>
<li>Trova tante variabili <b>linearmente indipendenti</b> quante siano le righe: esse saranno la <i>base iniziale</i>.</li>
<li>Finchè ci sono variabili con coefficienti <Min>positivi</Min>/<Max>negativi</Max> nella funzione obiettivo:
<ol>
<li>
<b>Scegli</b> la prima variabile fuori base con coefficiente <Min>positivo</Min>/<Max>negativo</Max> nella funzione obiettivo: essa è la <i>variabile entrante</i>.<br/>
2020-07-13 14:44:15 +00:00
<aside><u>Regola di Bland</u>: Si potrebbe scegliere qualsiasi variabile come entrante, ma scegliendo sempre la prima ammissibile ci si assicura che l'algoritmo termini.</aside>
2020-05-28 17:58:41 +00:00
</li>
<li>
<b>Scegli</b> la variabile in base con il minor rapporto positivo <Latex>{r`\frac{termine\ noto}{coeff.\ variabile\ entrante}`}</Latex>.
<aside>Se non sei riuscito a trovare nessuna variabile con un rapporto positivo, significa che il poliedro è <Unbounded/>.</aside>
</li>
2020-07-13 14:44:15 +00:00
<li><u>Pivot</u>: <b>trasforma</b> tutte le funzioni del sistema in modo che abbiano 0 nella colonna della variabile entrante, tranne nella riga della variabile uscente, in cui avrà 1.</li>
2020-05-28 17:58:41 +00:00
</ol>
</li>
<li>Il poliedro è <Finite/>: i <b>termini noti dei vincoli</b> sono le coordinate del suo vertice ottimo, mentre il <b>termine noto della funzione obiettivo</b> è il valore ottimo.</li>
</ol>
</Panel>
<Panel title={"Soluzioni di base degenerata"}>
<p>
Una soluzione con almeno una variabile di valore <Latex>0</Latex>, dovuta a uno o più <b>vincoli ridondanti</b>.
</p>
<p>
Senza <b>Regola di Bland</b> e in presenza di vincoli ridondanti si rischia di trovarsi a fare pivot infiniti.
</p>
</Panel>
</Section>
<Section title={"Metodo delle due fasi"}>
<Panel title={"Metodo delle due fasi"}>
<p>
2020-07-13 14:44:15 +00:00
Un <b>estensione del Simplex</b> per permettere la risoluzione di problemi la cui <b>origine non è una soluzione ammissibile</b>.
2020-05-28 17:58:41 +00:00
</p>
<p>
Prevede l'introduzione di un <i>problema ausiliario</i>, le cui incognite sono dette <i>artificiali</i>.
</p>
<p>
Il vettore delle incognite artificiali è solitamente chiamato <Latex>{r`\mathbf{y}`}</Latex>.
</p>
</Panel>
<Panel title={"Procedimento"}>
<ol>
<li>Crea un nuovo tableau, <b>aggiungendo variabili artificiali</b> in modo da avere una base ammissibile.</li>
<li>Sostituisci la vecchia funzione obiettivo con una nuova che <b>minimizzi la somma</b> di tutte le variabili artificiali.</li>
2020-07-13 14:44:15 +00:00
<li><u>Fase 1</u>: <b>Risolvi</b> il nuovo problema con il Simplex primale.</li>
2020-05-28 17:58:41 +00:00
<li>Se il Simplex termina quando ci sono ancora <b>variabili artificiali nella base</b>, allora il poliedro è <b><Empty/></b>.</li>
<li>Una volta che le variabili artificiali sono fuori base, <b>elimina</b> le loro colonne e la nuova funzione obiettivo.<br/></li>
<li>Riporta il tableau in forma base compiendo operazioni per <b>azzerare i coefficienti</b> delle variabili di base nella funzione obiettivo.</li>
2020-07-13 14:44:15 +00:00
<li><u>Fase 2</u>: <b>Risolvi</b> il tableau con il Simplex primale.</li>
2020-05-28 17:58:41 +00:00
</ol>
</Panel>
</Section>
<Section title={"Rilassamento"}>
<Panel title={"Cos'è?"}>
<p>
Una versione semplificata di un problema nella quale si <b>ignora la violazione</b> di uno o più vincoli.
</p>
</Panel>
<Panel title={"Rilassamento di Lagrange"}>
<p>
Un rilassamento che permette di misurare <b>di quanto i vincoli vengono violati</b>.
</p>
<p>
I vincoli, moltiplicati per <b>coefficienti di rilassamento</b>, vengono inseriti nella funzione obiettivo.
</p>
<p>
Il vettore dei coefficienti di rilassamento solitamente è indicato con <Latex>{r`\mathbf{u}`}</Latex>.
</p>
<Example>
<p>
Il sistema:
</p>
<Latex inline={false}>{r`
\begin{cases}
z = 3 x_1 + 5 x_2\\
2 x_1 + 3 x_2 \geq 12\\
- x_1 + 3 x_2 \geq 3\\
x_1 \geq 0\\
x_2 \geq 0
\end{cases}
`}</Latex>
<p>
diventa:
</p>
<Latex inline={false}>{r`
\begin{cases}
z = 3 x_1 + 5 x_2 + u_1 ( 12 - 2 x_1 - 3 x_2 ) + u_2 ( 3 + x_1 - 3 x_2 )\\
x_1 \geq 0\\
x_2 \geq 0
\end{cases}
`}</Latex>
</Example>
</Panel>
</Section>
<Section title={"Dualità"}>
<Panel title={"Duale"}>
<p>
Il sistema che <b><Min>massimizza</Min>/<Max>minimizza</Max> i moltiplicatori di rilassamento</b> di un problema detto <i>primale</i>.
</p>
</Panel>
<Panel title={"In termini matriciali"}>
<p>
Possiamo <b>trasporre</b> il tableau e sostituire le variabili <Latex>{r`x_n`}</Latex> con variabili <Latex>{r`u_n`}</Latex> per ottenere il sistema duale!
</p>
<p>
I maggiori e minori dei vincoli diventeranno maggiori e minori delle variabili e viceversa.
</p>
</Panel>
<Panel title={"Feasibility del duale"}>
<ul>
<li>Se un problema ha una <b>soluzione finita</b>, allora anche il suo duale la avrà.</li>
<li>Se un problema è <b><Empty/></b>, allora il suo duale potrà essere <Empty/> oppure <Unbounded/>.</li>
<li>Se un problema è <b><Unbounded/></b>, allora il suo duale sarà certamente <Empty/>.</li>
</ul>
</Panel>
2020-07-13 14:44:15 +00:00
<Panel title={"Variabili e vincoli"}>
<p>
Variabili e vincoli del duale corrispondono rispettivamente a vincoli e variabili del primale.
</p>
<p>
In particolare:
</p>
<table>
<thead>
<tr>
2020-07-14 14:04:51 +00:00
<th><Min>Min</Min></th>
<th><Max>Max</Max></th>
2020-07-13 14:44:15 +00:00
</tr>
</thead>
<tbody>
<tr>
<td>Vincolo <ILatex>\leq</ILatex></td>
<td>Variabile <ILatex>\leq</ILatex></td>
</tr>
<tr>
<td>Vincolo <ILatex>\geq</ILatex></td>
<td>Variabile <ILatex>\geq</ILatex></td>
</tr>
<tr>
<td>Vincolo <ILatex>=</ILatex></td>
<td>Variabile <b>libera</b></td>
</tr>
<tr>
<td>Variabile <ILatex>\leq</ILatex></td>
<td>Vincolo <ILatex>\geq</ILatex></td>
</tr>
<tr>
<td>Variabile <ILatex>\geq</ILatex></td>
<td>Vincolo <ILatex>\leq</ILatex></td>
</tr>
<tr>
<td>Variabile <b>libera</b></td>
<td>Vincolo <ILatex>=</ILatex></td>
</tr>
</tbody>
</table>
</Panel>
2020-05-28 17:58:41 +00:00
</Section>
<Section title={"Un po' di teoria"}>
<Panel title={"Lemma di Farkas"}>
<p>
Una disuguaglianza lineare <Latex>{r`c_0 \leq \mathbf{c}^T \mathbf{x}`}</Latex> è verificata da tutti i punti di un poliedro non-<Empty/> se e solo se esiste un vettore <Latex>{r`u \in \mathfrak{R}^m`}</Latex> tale che:
</p>
<PLatex>{r`\mathbf{c}^T \geq \mathbf{u}^T \mathbf{A}`}</PLatex>
<PLatex>{r`c_0 \leq \mathbf{u}^T \mathbf{b}`}</PLatex>
</Panel>
<Panel title={"Dualità forte"}>
<p>
Il teorema che dimostra l'equivalenza tra primale e duale.
</p>
<p>
Se uno dei due problemi è finito, la soluzione di uno coincide con la soluzione dell'altro.
</p>
<p>
<Latex>{r`\mathbf{c}^T \mathbf{x} = \mathbf{u}^T \mathbf{b}`}</Latex>
</p>
<p>
<Todo>TODO: Anche qui c'è una lunga dimostrazione...</Todo>
</p>
</Panel>
<Panel title={"Dualità debole"}>
<p>
Il teorema che dimostra che il valore della funzione obiettivo del duale (di un qualsiasi tableau) è sempre <Min>minore o uguale</Min>/<Max>maggiore o uguale</Max> alla soluzione del corrispettivo primale.
</p>
<p>
<Todo>TODO: Dimostrazione cortina, ma sembra complicata.</Todo>
</p>
</Panel>
<Panel title={"Condizioni di ottimalità"}>
<p>
Il teorema che ci permette di passare dalla soluzione del duale alla soluzione del primale. <Todo>TODO: credo?</Todo>
</p>
<p>
Si deriva combinando le seguenti condizioni:
</p>
<ul>
<li>Ammissibilità del primale: <Latex>{r`\mathbf{A} \mathbf{X} \geq \mathbf{b}, \quad \mathbf{x} \geq 0`}</Latex></li>
<li>Ammissibilità del duale: <Latex>{r`\mathbf{u}^T \mathbf{A} \leq \mathbf{c}^T, \quad \mathbf{u} \geq 0`}</Latex></li>
<li>Teorema della dualità forte: <Latex>{r`\mathbf{c}^T \mathbf{x} = \mathbf{u}^T \mathbf{b}`}</Latex> (alla soluzione ottima)</li>
</ul>
<p>
Ne risulta che una soluzione è ottima se e solo se:
</p>
<PLatex>{r`\left( \mathbf{c}^T - \mathbf{u}^T \mathbf{A} \right) \mathbf{x} = 0`}</PLatex>
<PLatex>{r`\mathbf{u}^T \left( \mathbf{A} \mathbf{x} - \mathbf{b} \right) = 0`}</PLatex>
</Panel>
</Section>
<Section title={"Simplex duale"}>
<Panel title={"Cos'è?"}>
<p>
Un'estensione al Simplex primale che opera sul problema duale.
</p>
</Panel>
<Panel title={"Come funziona?"}>
<p>
2020-07-13 14:44:15 +00:00
Funziona esattamente come il Simplex primale, ma opera sul duale.
2020-05-28 17:58:41 +00:00
</p>
</Panel>
</Section>
<Section title={"Analisi di sensibilità"}>
<Panel title={"Cos'è?"}>
<p>
2020-07-03 15:08:40 +00:00
Un procedimento che misura di <b>quanto può variare</b> il termine noto di un vincolo <Latex>{r`b_i`}</Latex> o il coefficiente della funzione obiettivo <Latex>{r`c_i`}</Latex> prima che la base degeneri.
</p>
</Panel>
</Section>
<Section title={"Ottimizzazione lineare intera"}>
<Panel title={"Cos'è?"}>
<p>
Particolari problemi di ottimizzazione lineare in cui le <b>variabili sono vincolate ad essere numeri interi</b>.
</p>
<PLatex>{r`
\mathbf{x} \in \mathbb{Z}^n
`}</PLatex>
<p>
Spesso detti anche <i>problemi di <abbr title={"Integer Linear Programming"}>ILP</abbr></i>.
</p>
</Panel>
<Panel title={"Rilassamento lineare"}>
<p>
2020-07-13 14:44:15 +00:00
Un rilassamento che rimuove il <b>vincolo di integrità</b> a un problema, trovando la sua <b>soluzione continua</b>.
2020-07-03 15:08:40 +00:00
</p>
</Panel>
</Section>
<Section title={"Dal rilassamento alla soluzione"}>
<Panel title={"Enumerazione totale"}>
<p>
Un <b>modo</b> per passare dalla soluzione del rilassamento alla soluzione intera di un problema di ILP.
2020-05-28 17:58:41 +00:00
</p>
2020-07-03 15:08:40 +00:00
<p>
Consiste nel calcolare la soluzione di ogni singolo punto incluso nel poliedro, e selezionare la <Min>minore</Min>/<Max>maggiore</Max>.
</p>
<p>
Trova <b>sicuramente</b> la soluzione giusta, ma il costo computazionale è esponenziale <ILatex>O(n^k)</ILatex>!
</p>
</Panel>
<Panel title={"Arrotondamento"}>
<p>
Un altro <b>modo</b> per passare dalla soluzione del rilassamento alla soluzione intera di un problema di ILP.
</p>
<p>
Consiste nell'<b>arrotondare tutte le variabili al loro valore intero più vicino</b>, e calcolarne il valore ottimo.
</p>
<p>
Funziona bene per valori grandi, ma più essi si avvicinano allo 0 più l'<b>errore diventa grande</b>.
</p>
</Panel>
<Panel title={"Piani secanti"}>
<p>
Un altro <b>modo</b> ancora per passare dalla soluzione del rilassamento alla soluzione intera di un problema di ILP.
</p>
<p>
Consiste nel tagliare il poliedro con nuovi vincoli (<i>piani secanti</i>) che <b>riducono le possibili soluzioni continue</b> ma non quelle intere.
</p>
<p>
Per selezionare i vincoli, si usano i <b>tagli di Gomory</b>:
</p>
<PLatex>{r`
\sum_{j \in F} \left( \left( a_{tj} - \lfloor a_{tj} \rfloor \right) \cdot x_j \right) \geq (b_t - \lfloor b_t \rfloor)
`}</PLatex>
<p>
Per ogni valore noto frazionario si viene quindi a creare <b>una nuova variabile in base</b> e un nuovo vincolo formato dall'opposto di tutti i valori frazionari dei coefficienti fuori base.
</p>
<Example>
<p>
Il tableau:
<table>
<thead>
<tr>
<th><BLatex>{r`x_1`}</BLatex></th>
<th><BLatex>{r`x_2`}</BLatex></th>
<th><BLatex>{r`s_1`}</BLatex></th>
<th><BLatex>{r`s_2`}</BLatex></th>
<th><abbr title={"Termine noto"}>TN</abbr></th>
</tr>
</thead>
<tbody>
<tr>
<td><BLatex>{r`1`}</BLatex></td>
<td><BLatex>{r`1`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
</tr>
<tr>
<td><BLatex>{r`1`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
<td><BLatex>{r`1`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
<td><BLatex>{r`3`}</BLatex></td>
</tr>
<tr>
2020-07-13 14:44:15 +00:00
<td><BLatex>{r`\frac{3}{2}`}</BLatex></td>
2020-07-03 15:08:40 +00:00
<td><BLatex>{r`\frac{1}{2}`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
<td><BLatex>{r`1`}</BLatex></td>
<td><BLatex>{r`\frac{6}{5}`}</BLatex></td>
</tr>
</tbody>
</table>
</p>
<p>
Diventa:
<table>
<thead>
<tr>
<th><BLatex>{r`x_1`}</BLatex></th>
<th><BLatex>{r`x_2`}</BLatex></th>
<th><BLatex>{r`s_1`}</BLatex></th>
<th><BLatex>{r`s_2`}</BLatex></th>
<th style={"background-color: rgba(255, 255, 0, 0.1);"}><BLatex>{r`s_3`}</BLatex></th>
<th><abbr title={"Termine noto"}>TN</abbr></th>
</tr>
</thead>
<tbody>
<tr>
<td><BLatex>{r`1`}</BLatex></td>
<td><BLatex>{r`1`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
<td style={"background-color: rgba(255, 255, 0, 0.1);"}><BLatex>{r`0`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
</tr>
<tr>
<td><BLatex>{r`1`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
<td><BLatex>{r`1`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
<td style={"background-color: rgba(255, 255, 0, 0.1);"}><BLatex>{r`0`}</BLatex></td>
<td><BLatex>{r`3`}</BLatex></td>
</tr>
<tr>
2020-07-13 14:44:15 +00:00
<td><BLatex>{r`\frac{3}{2}`}</BLatex></td>
2020-07-03 15:08:40 +00:00
<td><BLatex>{r`\frac{1}{2}`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
<td><BLatex>{r`1`}</BLatex></td>
<td style={"background-color: rgba(255, 255, 0, 0.1);"}><BLatex>{r`0`}</BLatex></td>
<td><BLatex>{r`\frac{6}{5}`}</BLatex></td>
</tr>
<tr style={"background-color: rgba(255, 255, 0, 0.1);"}>
2020-07-13 14:44:15 +00:00
<td><BLatex>{r`-\frac{1}{2}`}</BLatex></td>
2020-07-03 15:08:40 +00:00
<td><BLatex>{r`-\frac{1}{2}`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
<td><BLatex>{r`0`}</BLatex></td>
<td style={"background-color: rgba(255, 255, 0, 0.2);"}><BLatex>{r`1`}</BLatex></td>
<td><BLatex>{r`-\frac{1}{5}`}</BLatex></td>
</tr>
</tbody>
</table>
</p>
</Example>
2020-05-28 17:58:41 +00:00
</Panel>
2020-07-13 14:44:15 +00:00
<Panel title={"Divide et impera"}>
<p>
È possibile usare la tecnica <i>divide et impera</i> per rendere più efficiente l'<b>enumerazione totale</b>.
</p>
<p>
Si divide il problema principale (trovare il valore ottimo di un problema di ILP) in più sottoproblemi (trovare il valore ottimo di un problema di ILP con una variabile impostata a un valore fisso).
</p>
<p>
Si crea così un <b>albero</b>.
</p>
<p>
È possibile <b>chiudere in anticipo</b> alcuni nodi dell'albero se il loro miglior possibile valore ottimo è inferiore a uno precedentemente trovato o se il loro poliedro è <Empty/>.
</p>
<p>
È possibile utilizzare diverse <b>strategie di esplorazione</b> dell'albero:
<ul>
<li><b>depth-first</b>: permette di raggiungere immediatamente a una soluzione accettabile (ma non ottimale)</li>
<li><b>best-first</b>: permette di raggiungere più velocemente alla soluzione corretta</li>
</ul>
</p>
</Panel>
<Panel title={"Seca et impera"}>
<p>
È possibile combinare il metodo dei <b>tagli secanti</b> con la tecnica <b>divide et impera</b> per raggiungere ancora più velocemente a una soluzione.
</p>
<p>
Si effettuano <b>poche iterazioni</b> del metodo dei tagli secanti, e sul risultato di quelle iterazioni si applica il <b>divide et impera</b>.
</p>
</Panel>
</Section>
2020-07-14 14:04:51 +00:00
<Section title={<span>Terminologia dei grafi <Todo>TODO: migliorare</Todo></span>}>
<Panel title={"Grafo"}>
<p>
Insieme di <b>nodi</b> <ILatex>{r`N`}</ILatex> e <b>archi</b> <ILatex>{r`E`}</ILatex> che li connettono.
</p>
<p>
Può essere <b>diretto</b> se gli archi hanno una direzione.
</p>
</Panel>
<Panel title={"Nodi adiacenti"}>
<p>
Nodi <b>connessi da un arco</b>.
</p>
</Panel>
<Panel title={"Arco incidente"}>
<p>
Arco <b>connesso a un dato nodo</b>.
</p>
</Panel>
<Panel title={"Arco entrante o uscente"}>
<p>
Un arco diretto che <b>termina</b> o <b>inizia</b> da un dato nodo.
</p>
</Panel>
<Panel title={"Grado"}>
<p>
<b>Conteggio</b> degli archi incidenti di un nodo.
</p>
<p>
Si può calcolare anche relativamente agli archi entranti o agli archi uscenti.
</p>
</Panel>
<Panel title={"Percorso"}>
<p>
Sequenza di <b>archi consecutivi</b>.
</p>
</Panel>
<Panel title={"Connessione"}>
<p>
Due nodi sono connessi se tra loro esiste <b>almeno un percorso</b>.
</p>
<p>
Un grafo è connesso se tutti i suoi nodi sono connessi.
</p>
</Panel>
<Panel title={"Cicli e circuiti"}>
<p>
Percorsi rispettivamente indiretti e diretti in cui l'inizio coincide con la fine.
</p>
</Panel>
<Panel title={"Grafo completo"}>
<p>
Grafo in cui ogni nodo è connesso con ogni altro.
</p>
<p>
Se diretto, contiene <ILatex>{r`n \cdot (n - 1)`}</ILatex> archi; altrimenti, ne contiene la metà.
</p>
</Panel>
<Panel title={"Matrice di adiacenza"}>
<blockquote>
Vedi <BaseLink href={"/algoritmiestrutturedati"}>Algoritmi</BaseLink>.
</blockquote>
</Panel>
<Panel title={"Lista di adiacenza"}>
<blockquote>
Vedi <BaseLink href={"/algoritmiestrutturedati"}>Algoritmi</BaseLink>.
</blockquote>
</Panel>
<Panel title={"Taglio"}>
<p>
Sottoinsieme di archi che connettono due sottoinsiemi di nodi.
</p>
<p>
Può essere anche uscente o entrante; in tal caso include solo gli archi entranti o uscenti dal sottoinsieme.
</p>
</Panel>
<Panel title={"Sottografo"}>
<p>
Sottoinsieme di nodi e archi di un grafo.
</p>
<p>
Tutti gli archi di un sottografo possono connettere solo nodi all'interno di esso.
</p>
</Panel>
<Panel title={"Albero"}>
<p>
Sottografo connesso e aciclico.
</p>
</Panel>
<Panel title={"Spanning tree"}>
<p>
Albero che include tutti i nodi di un grafo.
</p>
</Panel>
</Section>
<Section title={"Algoritmi con i grafi"}>
<Panel title={"Prim"}>
<p>
Crea uno spanning tree.
</p>
<ol>
<li>Aggiungi l'arco di costo minimo all'albero.</li>
<li>Finchè mancano ancora archi:
<ol>
<li>Trova tutti gli archi che aggiungerebbero un nuovo nodo all'albero.</li>
<li>Seleziona l'arco di costo minore.</li>
</ol>
</li>
</ol>
</Panel>
<Panel title={"Ordine topologico"}>
<p>
Trova l'ordine topologico di un albero.
</p>
<ol>
<li>Ripeti finchè ci sono nodi nel grafo:
<ol>
<li>Assegna un numero sequenziale a un nodo senza archi entranti.</li>
<li>Elimina il nodo a cui hai assegnato il numero.</li>
<li>Elimina tutti gli archi incidenti sul nodo che hai eliminato.</li>
</ol>
</li>
</ol>
</Panel>
<Panel title={"Percorsi minimi in grafo diretto"}>
<p>
Trova i percorsi di costo minimo in un albero.
</p>
<ol>
<li>Trova l'ordine topologico dell'albero.</li>
<li>Invece che provare ogni singola combinazione di nodi, prova solo i nodi che hanno un numero topologico maggiore di quello del nodo attuale.</li>
</ol>
<p>
<Todo>TODO: forse spiegarlo meglio non farebbe male</Todo>
</p>
</Panel>
<Panel title={"Algoritmo di Dijkstra"}>
<blockquote>
Vedi <BaseLink href={"/algoritmiestrutturedati"}>Algoritmi</BaseLink>.
</blockquote>
</Panel>
<Panel title={"Algoritmo di Ford-Fulkerson"}>
<Example>
Trova il volume massimo di acqua che è possibile fare scorrere attraverso tubature con una data capacità.
</Example>
<p>
Costruisci il grafo residuo e vedi se c'è un percorso che va dalla sorgente alla destinazione.
</p>
<p>
<Image src={"https://i.imgur.com/FJk44q0.png"}/>
</p>
<p>
<Image src={"https://i.imgur.com/fzb6xz2.png"}/>
</p>
2020-07-13 14:44:15 +00:00
</Panel>
2020-05-28 17:58:41 +00:00
</Section>
</div>
)
2020-03-09 23:18:13 +00:00
}