1
Fork 0
mirror of https://github.com/Steffo99/unisteffo.git synced 2025-03-13 12:17:36 +00:00
This commit is contained in:
Steffo 2020-08-26 18:16:43 +02:00
parent 3fd64d4320
commit fc513e8376
27 changed files with 412 additions and 121 deletions

View file

@ -1 +0,0 @@
/*! For license information please see bundle.3fda8.esm.js.LICENSE.txt */

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

1
docs/bundle.b7974.esm.js.LICENSE.txt generated Normal file
View file

@ -0,0 +1 @@
/*! For license information please see bundle.b7974.esm.js.LICENSE.txt */

View file

@ -1 +1 @@
{"version":3,"sources":[],"names":[],"mappings":"","file":"bundle.3fda8.esm.js","sourceRoot":""}
{"version":3,"sources":[],"names":[],"mappings":"","file":"bundle.b7974.esm.js","sourceRoot":""}

2
docs/index.html generated
View file

@ -1 +1 @@
<!DOCTYPE html><html lang="it"><head><meta charset="utf-8"><title>appuntiweb</title><meta content="width=device-width,initial-scale=1" name="viewport"><link href="/favicon.ico" rel="icon" type="image/x-icon"><link href="/favicon.ico" rel="shortcut icon" type="image/x-icon"><style>body{background-color:#0d193b}</style><link rel="manifest" href="/manifest.json"><link href="/bundle.724d1.css" rel="preload" as="style"><noscript><link rel="stylesheet" href="/bundle.724d1.css"></noscript><script>function $loadcss(u,m,l){(l=document.createElement('link')).rel='stylesheet';l.href=u;document.head.appendChild(l)}$loadcss("/bundle.724d1.css")</script></head><body><script type="__PREACT_CLI_DATA__">{"preRenderData":{"url":"/"}}</script><script nomodule="">!function(){var e=document,t=e.createElement("script");if(!("noModule"in t)&&"onbeforeload"in t){var n=!1;e.addEventListener("beforeload",function(e){if(e.target===t)n=!0;else if(!e.target.hasAttribute("nomodule")||!n)return;e.preventDefault()},!0),t.type="module",t.src=".",e.head.appendChild(t),t.remove()}}();</script><script crossorigin="anonymous" src="/bundle.3fda8.esm.js" type="module"></script><script nomodule="" src="/polyfills.8f3b5.js"></script><script nomodule="" defer="defer" src="/bundle.cdee3.js"></script></body></html>
<!DOCTYPE html><html lang="it"><head><meta charset="utf-8"><title>appuntiweb</title><meta content="width=device-width,initial-scale=1" name="viewport"><link href="/favicon.ico" rel="icon" type="image/x-icon"><link href="/favicon.ico" rel="shortcut icon" type="image/x-icon"><style>body{background-color:#0d193b}</style><link rel="manifest" href="/manifest.json"><link href="/bundle.724d1.css" rel="preload" as="style"><noscript><link rel="stylesheet" href="/bundle.724d1.css"></noscript><script>function $loadcss(u,m,l){(l=document.createElement('link')).rel='stylesheet';l.href=u;document.head.appendChild(l)}$loadcss("/bundle.724d1.css")</script></head><body><script type="__PREACT_CLI_DATA__">{"preRenderData":{"url":"/"}}</script><script nomodule="">!function(){var e=document,t=e.createElement("script");if(!("noModule"in t)&&"onbeforeload"in t){var n=!1;e.addEventListener("beforeload",function(e){if(e.target===t)n=!0;else if(!e.target.hasAttribute("nomodule")||!n)return;e.preventDefault()},!0),t.type="module",t.src=".",e.head.appendChild(t),t.remove()}}();</script><script crossorigin="anonymous" src="/bundle.b7974.esm.js" type="module"></script><script nomodule="" src="/polyfills.29a91.js"></script><script nomodule="" defer="defer" src="/bundle.44838.js"></script></body></html>

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
{"version":3,"sources":[],"names":[],"mappings":"","file":"polyfills.b885f.esm.js","sourceRoot":""}
{"version":3,"sources":[],"names":[],"mappings":"","file":"polyfills.37ed5.esm.js","sourceRoot":""}

View file

@ -1 +1 @@
{"/":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1}},"/AlgoritmiEStruttureDati":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1},"route-AlgoritmiEStruttureDati.chunk.e6f90.esm.js":{"type":"script","weight":0.9}},"/ApprendimentoSistemiArtificiali":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1},"route-ApprendimentoSistemiArtificiali.chunk.857ce.esm.js":{"type":"script","weight":0.9},"route-ApprendimentoSistemiArtificiali.chunk.55de3.css":{"type":"style","weight":0.9}},"/BasiDiDati":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1},"route-BasiDiDati.chunk.f1dc7.esm.js":{"type":"script","weight":0.9},"route-BasiDiDati.chunk.1d0a7.css":{"type":"style","weight":0.9}},"/CalcoloNumerico":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1},"route-CalcoloNumerico.chunk.3b3c9.esm.js":{"type":"script","weight":0.9},"route-CalcoloNumerico.chunk.782c4.css":{"type":"style","weight":0.9}},"/Fisica":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1},"route-Fisica.chunk.e2766.esm.js":{"type":"script","weight":0.9},"route-Fisica.chunk.ed9a8.css":{"type":"style","weight":0.9}},"/Home":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1},"route-Home.chunk.d3981.esm.js":{"type":"script","weight":0.9},"route-Home.chunk.b342d.css":{"type":"style","weight":0.9}},"/MingwInstall":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1},"route-MingwInstall.chunk.1eacd.esm.js":{"type":"script","weight":0.9}},"/NetLogo":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1},"route-NetLogo.chunk.18d97.esm.js":{"type":"script","weight":0.9},"route-NetLogo.chunk.1d0a7.css":{"type":"style","weight":0.9}},"/OttimizzazioneLineare":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1},"route-OttimizzazioneLineare.chunk.b7c6f.esm.js":{"type":"script","weight":0.9},"route-OttimizzazioneLineare.chunk.99830.css":{"type":"style","weight":0.9}},"/RipassoDiAlgebraLineare":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1},"route-RipassoDiAlgebraLineare.chunk.0ebef.esm.js":{"type":"script","weight":0.9},"route-RipassoDiAlgebraLineare.chunk.1d0a7.css":{"type":"style","weight":0.9}},"/Statistica":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1},"route-Statistica.chunk.68267.esm.js":{"type":"script","weight":0.9},"route-Statistica.chunk.9d494.css":{"type":"style","weight":0.9}},"/VlDiGeometria":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.3fda8.esm.js":{"type":"script","weight":1},"route-VlDiGeometria.chunk.56154.esm.js":{"type":"script","weight":0.9}}}
{"/":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1}},"/AlgoritmiEStruttureDati":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1},"route-AlgoritmiEStruttureDati.chunk.e6f90.esm.js":{"type":"script","weight":0.9}},"/ApprendimentoSistemiArtificiali":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1},"route-ApprendimentoSistemiArtificiali.chunk.857ce.esm.js":{"type":"script","weight":0.9},"route-ApprendimentoSistemiArtificiali.chunk.55de3.css":{"type":"style","weight":0.9}},"/BasiDiDati":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1},"route-BasiDiDati.chunk.f1dc7.esm.js":{"type":"script","weight":0.9},"route-BasiDiDati.chunk.1d0a7.css":{"type":"style","weight":0.9}},"/CalcoloNumerico":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1},"route-CalcoloNumerico.chunk.09ebc.esm.js":{"type":"script","weight":0.9},"route-CalcoloNumerico.chunk.8f997.css":{"type":"style","weight":0.9}},"/Fisica":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1},"route-Fisica.chunk.e2766.esm.js":{"type":"script","weight":0.9},"route-Fisica.chunk.ed9a8.css":{"type":"style","weight":0.9}},"/Home":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1},"route-Home.chunk.d3981.esm.js":{"type":"script","weight":0.9},"route-Home.chunk.b342d.css":{"type":"style","weight":0.9}},"/MingwInstall":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1},"route-MingwInstall.chunk.1eacd.esm.js":{"type":"script","weight":0.9}},"/NetLogo":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1},"route-NetLogo.chunk.18d97.esm.js":{"type":"script","weight":0.9},"route-NetLogo.chunk.1d0a7.css":{"type":"style","weight":0.9}},"/OttimizzazioneLineare":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1},"route-OttimizzazioneLineare.chunk.b7c6f.esm.js":{"type":"script","weight":0.9},"route-OttimizzazioneLineare.chunk.99830.css":{"type":"style","weight":0.9}},"/RipassoDiAlgebraLineare":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1},"route-RipassoDiAlgebraLineare.chunk.0ebef.esm.js":{"type":"script","weight":0.9},"route-RipassoDiAlgebraLineare.chunk.1d0a7.css":{"type":"style","weight":0.9}},"/Statistica":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1},"route-Statistica.chunk.68267.esm.js":{"type":"script","weight":0.9},"route-Statistica.chunk.9d494.css":{"type":"style","weight":0.9}},"/VlDiGeometria":{"bundle.724d1.css":{"type":"style","weight":1},"bundle.b7974.esm.js":{"type":"script","weight":1},"route-VlDiGeometria.chunk.56154.esm.js":{"type":"script","weight":0.9}}}

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
{"version":3,"sources":[],"names":[],"mappings":"","file":"route-CalcoloNumerico.chunk.3b3c9.esm.js","sourceRoot":""}
{"version":3,"sources":[],"names":[],"mappings":"","file":"route-CalcoloNumerico.chunk.09ebc.esm.js","sourceRoot":""}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +0,0 @@
.red__2y1B_{color:#ff7d7d}.orange__dD2kx{color:#ffbb7d}.yellow__OEpwl{color:#ffff7d}.lime__CVe41{color:#7dff7d}.cyan__26ZAg{color:#7dffff}.blue__LO7Xm{color:#7d7dff}.magenta__1Akee{color:#ff7dff}.example__2PzAa{color:#d3a1ff;padding:4px;border-radius:4px;margin:4px 0}.example__2PzAa,.example__2PzAa table{background-color:rgba(211,161,255,.05)}.example__2PzAa table{border-spacing:0;border:2px solid rgba(211,161,255,.1);border-collapse:collapse}.example__2PzAa table tbody td,.example__2PzAa table tbody th,.example__2PzAa table thead td,.example__2PzAa table thead th{padding:4px;border:1px solid rgba(211,161,255,.1)}.example__2PzAa table thead{background-color:rgba(211,161,255,.1);color:#fff}.menulist__2Cmnq{font-size:large}.menulist__2Cmnq small{font-size:small}

View file

@ -0,0 +1 @@
.menulist__2Cmnq{font-size:large}.menulist__2Cmnq small{font-size:small}.red__2y1B_{color:#ff7d7d}.orange__dD2kx{color:#ffbb7d}.yellow__OEpwl{color:#ffff7d}.lime__CVe41{color:#7dff7d}.cyan__26ZAg{color:#7dffff}.blue__LO7Xm{color:#7d7dff}.magenta__1Akee{color:#ff7dff}.example__2PzAa{color:#d3a1ff;padding:4px;border-radius:4px;margin:4px 0}.example__2PzAa,.example__2PzAa table{background-color:rgba(211,161,255,.05)}.example__2PzAa table{border-spacing:0;border:2px solid rgba(211,161,255,.1);border-collapse:collapse}.example__2PzAa table tbody td,.example__2PzAa table tbody th,.example__2PzAa table thead td,.example__2PzAa table thead th{padding:4px;border:1px solid rgba(211,161,255,.1)}.example__2PzAa table thead{background-color:rgba(211,161,255,.1);color:#fff}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

2
docs/sw-esm.js generated

File diff suppressed because one or more lines are too long

2
docs/sw.js generated

File diff suppressed because one or more lines are too long

View file

@ -1,7 +1,7 @@
{
"private": true,
"name": "appuntiweb",
"version": "0.8.4",
"version": "0.8.6",
"license": "AGPL-3.0-or-later",
"scripts": {
"start": "preact watch --template src/template.html",

File diff suppressed because one or more lines are too long

View file

@ -1,6 +1,7 @@
import style from "./05_ApprossimazioneDatiSperimentali.less";
import {Fragment} from "preact";
import {Section, Panel, ILatex, BLatex, PLatex} from "bluelib";
import Example from "../../components/Example";
const r = String.raw;
@ -13,11 +14,208 @@ export default function (props) {
<p>
Interpolare dati sperimentali non fornisce quasi mai un modello del fenomeno.
</p>
<p>
Vogliamo costruire una <b>funzione di regressione</b> che, dati molti più dati del grado della funzione, minimizzi il quadrato della distanza tra i punti sperimentali e i punti della funzione di regressione.
</p>
<p>
Denominiamo:
</p>
<ul>
<li><ILatex>{r`{\color{Orange} f}`}</ILatex>: la <b>funzione "effettiva"</b> del fenomeno</li>
<li><ILatex>{r`{\color{Yellow} q}`}</ILatex>: la <b>funzione di regressione</b> che costruiamo per approssimarlo</li>
<li><ILatex>{r`{\color{Red} Q }`}</ILatex>: la <b>funzione "errore di regressione"</b> da minimizzare</li>
<li><ILatex>{r`(\ x_i, f(x_i)\ )`}</ILatex>: i <b>punti sperimentali</b></li>
</ul>
<p>
L'obiettivo è minimizzare l'<b>errore di approssimazione</b> <ILatex>{r`Q`}</ILatex>, ovvero:
</p>
<PLatex>{r`\min {\color{Red} Q } = \sum_{i = 1}^m (\ {\color{Yellow} q(x_i)} - {\color{Orange} f(x_i)}\ )^2 `}</PLatex>
</Panel>
</Section>
<Section>
<Panel title={""}>
<Panel title={"Regressione lineare"}>
<p>
Trova la <b>retta</b> <ILatex>{r`{\color{Yellow} q}`}</ILatex> che meglio approssima tutti gli <ILatex>{r`m`}</ILatex> dati sperimentali.
</p>
<p>
Essendo una retta, avrà <b>due parametri</b>: il termine noto <ILatex>{r`a_0`}</ILatex>, e la pendenza <ILatex>{`a_1`}</ILatex>.
</p>
<PLatex>{r`{\color{Yellow} q(x) } = a_0 + a_1 \cdot {\color{Green} x}`}</PLatex>
<p>
L'errore da minimizzare per ricavare i parametri sarà:
</p>
<PLatex>{r`
\min {\color{Red} Q } = \sum_{i = 1}^m ( {\color{Yellow} a_0 + a_1 \cdot x_i} - {\color{Orange} f(x_i)} )^2
`}</PLatex>
</Panel>
<Panel title={"Regressione lineare matriciale"}>
<p>
Possiamo costruire una <b>matrice di regressione</b> <ILatex>{r`A`}</ILatex> contenente tutti i <b>punti sperimentali</b>:
</p>
<PLatex>{r`
A =
\begin{pmatrix}
1 & x_1\\\\
1 & x_2\\\\
\vdots & \vdots\\\\
1 & x_m
\end{pmatrix}
`}</PLatex>
<p>
Inoltre, se costruiamo il <b>vettore dei parametri</b> <ILatex>{r`\alpha`}</ILatex>:
</p>
<PLatex>{r`
\alpha =
\begin{pmatrix}
a_0\\\\
a_1
\end{pmatrix}
`}</PLatex>
<p>
Avremo che:
</p>
<PLatex>{r`{\color{Yellow} q(x) } = A \cdot \alpha`}</PLatex>
<p>
Inoltre, potremo calcolare l'errore attraverso la norma:
</p>
<PLatex>{r`{\color{Red} Q } = \| A \cdot \alpha - y \|^2`}</PLatex>
</Panel>
</Section>
<Section>
<Panel title={"Regressione polinomiale"}>
<p>
Trova il <b>polinomio</b> <ILatex>{r`{\color{Yellow} q}`}</ILatex> di grado <ILatex>{r`n-1`}</ILatex> che meglio approssima tutti gli <ILatex>{r`m`}</ILatex> dati sperimentali.
</p>
<p>
Essendo un polinomio di grado <ILatex>{r`n-1`}</ILatex>, avrà <ILatex>{r`n`}</ILatex> parametri.
</p>
<PLatex>{r`{\color{Yellow} q(x) } = a_0 + a_1 \cdot {\color{Green} x} + a_2 \cdot {\color{Green} x^2} +\ \dots \ + a_{n-1} \cdot {\color{Green} x^{n-1}`}</PLatex>
<Example>
<p>
La regressione lineare è un caso particolare di regressione generale in cui i parametri sono 2!
</p>
</Example>
<p>
L'errore da minimizzare per ricavare i parametri sarà:
</p>
<PLatex>{r`
\min {\color{Red} Q} = \sum_{i = 1}^m ( {\color{Yellow} a_0 + a_1 \cdot x_i + a_2 \cdot x_i^2 +\ \dots \ + a_{n-1} \cdot x_i^{n-1}} - {\color{Orange} y_i} )^2
`}</PLatex>
</Panel>
<Panel title={"Regressione polinomiale matriciale"}>
<p>
Possiamo costruire una <b>matrice di regressione</b> <ILatex>{r`A`}</ILatex> contenente tutti i <b>punti sperimentali</b> a tutti i gradi del polinomio:
</p>
<PLatex>{r`
A =
\begin{pmatrix}
1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\\\
1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
1 & x_m & x_m^2 & \dots & x_m^{n-1}
\end{pmatrix}
`}</PLatex>
<p>
Inoltre, se costruiamo il <b>vettore dei parametri</b> <ILatex>{r`\alpha`}</ILatex>:
</p>
<PLatex>{r`
\alpha =
\begin{pmatrix}
a_0\\\\
a_1\\\\
\vdots\\\\
a_{n-1}
\end{pmatrix}
`}</PLatex>
<p>
Avremo che:
</p>
<PLatex>{r`{\color{Yellow} q(x) } = A \cdot \alpha`}</PLatex>
<p>
Inoltre, potremo calcolare l'errore attraverso la norma:
</p>
<PLatex>{r`{\color{Red} Q } = \| A \cdot \alpha - y \|^2`}</PLatex>
<Example>
Normalmente, i dati sono molti di più, ma se il numero di parametri <ILatex>{r`n`}</ILatex> fosse uguale al numero di dati <ILatex>{r`m`}</ILatex>, allora si otterrebbe il <b>polinomio di interpolazione</b>!
</Example>
</Panel>
</Section>
<Section>
<Panel title={"Regressione generale"}>
<p>
Trova i <b>coefficienti della combinazione lineare</b> <ILatex>{r`{\color{Yellow} q}`}</ILatex> che meglio approssima tutti gli <ILatex>{r`m`}</ILatex> dati sperimentali.
</p>
<PLatex>{r`{\color{Yellow} q(x) } = a_0 \cdot {\color{Green} \phi_0 (x)} + a_1 \cdot {\color{Green} \phi_1 (x)} + \dots + a_2 \cdot {\color{Green} \phi_2 (x)} +\ \dots\ + a_{n-1} \cdot {\color{Green} \phi_{n-1} (x)}`}</PLatex>
<Example>
<p>
La regressione polinomiale è un caso particolare di regressione generale in cui:
</p>
<PLatex>{r`{\color{Green} \phi_{n} (x)} = x^n`}</PLatex>
</Example>
<p>
L'errore da minimizzare per ricavare i parametri sarà:
</p>
<PLatex>{r`
\min {\color{Red} Q } = \sum_{i = 1}^m ( {\color{Yellow} a_0 \cdot \phi_0 (x) + a_1 \cdot \phi_1 (x) + \dots + a_2 \cdot \phi_2 (x) +\ \dots\ + a_{n-1} \cdot \phi_{n-1} (x)} - {\color{Orange} f(x_i)} )^2
`}</PLatex>
</Panel>
<Panel title={"Regressione polinomiale generale"}>
<p>
Possiamo costruire una <b>matrice di regressione</b> <ILatex>{r`A`}</ILatex> contenente tutti i <b>punti sperimentali</b> a tutti i gradi del polinomio:
</p>
<PLatex>{r`
A =
\begin{pmatrix}
\phi_0(x_1) & \phi_1(x_1) & \phi_2(x_1) & \dots & \phi_{n_1}(x_1) \\\\
\phi_0(x_2) & \phi_1(x_2) & \phi_2(x_2) & \dots & \phi_{n-1}(x_2) \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\phi_0(x_m) & \phi_1(x_m) & \phi_2(x_m) & \dots & \phi_{n-1}(x_m)
\end{pmatrix}
`}</PLatex>
<p>
Inoltre, se costruiamo il <b>vettore dei parametri</b> <ILatex>{r`\alpha`}</ILatex>:
</p>
<PLatex>{r`
\alpha =
\begin{pmatrix}
a_0\\\\
a_1\\\\
\vdots\\\\
a_{n-1}
\end{pmatrix}
`}</PLatex>
<p>
Avremo che:
</p>
<PLatex>{r`{\color{Yellow} q(x) } = A \cdot \alpha`}</PLatex>
<p>
Inoltre, potremo calcolare l'errore attraverso la norma:
</p>
<PLatex>{r`{\color{Red} Q } = \| A \cdot \alpha - y \|^2`}</PLatex>
</Panel>
</Section>
<Section title={"Trovare i parametri"}>
<Panel title={"Caso non degenere"}>
<p>
Caso che prevede che le colonne di <ILatex>{r`A`}</ILatex> siano <b>linearmente indipendenti</b>.
</p>
<p>
La soluzione <b>esiste</b> sempre, ed è <b>unica</b>.
</p>
<p>
Per trovarla:
</p>
<ul>
<li>Fattorizziamo <ILatex>{r`A = Q \cdot \begin{pmatrix} R\\ 0 \end{pmatrix}`}</ILatex>.</li>
<li>Calcoliamo <ILatex>{r`w = Q^T \cdot y`}</ILatex>.</li>
<li>Teniamo solo i primi <ILatex>n</ILatex> valori di <ILatex>{r`w`}</ILatex> e mettiamoli in <ILatex>{r`w_1`}</ILatex>.</li>
<li>Calcoliamo <ILatex>{r`R \cdot \alpha = w_1`}</ILatex>.</li>
</ul>
</Panel>
<Panel title={"Caso generale"}>
<p>
Caso che non preclude alcuna composizione di <ILatex>{r`A`}</ILatex>.
</p>
</Panel>
</Section>
</Fragment>