{"version":3,"sources":["webpack:///./components/Example.less","webpack:///./routes/CalcoloNumerico/03_Interpolazione.js","webpack:///./components/MenuList.less","webpack:///./routes/CalcoloNumerico/02_ZeriDiFunzione.js","webpack:///./routes/CalcoloNumerico/04_InterpolazioneATratti.js","webpack:///./components/MenuList.js","webpack:///./components/Example.js","webpack:///./routes/CalcoloNumerico/01_SistemiLineari.js","webpack:///./routes/CalcoloNumerico/index.js","webpack:///./routes/CalcoloNumerico/00_Intro.js","webpack:///./routes/CalcoloNumerico/05_ApprossimazioneDatiSperimentali.js"],"names":["module","exports","r","String","raw","title","props","class","style","menulist","children","example","href"],"mappings":"4EACAA,EAAOC,QAAU,CAAC,IAAM,aAAa,OAAS,gBAAgB,OAAS,gBAAgB,KAAO,cAAc,KAAO,cAAc,KAAO,cAAc,QAAU,iBAAiB,QAAU,mB,+xLCGrLC,EAAIC,OAAOC,IAGF,eACX,OACI,EAAC,WAAD,KACI,EAAC,IAAD,CAASC,MAAO,4BACZ,EAAC,IAAD,CAAOA,MAAO,eACV,wDAC8C,4BAD9C,0DAIA,EAAC,IAAD,sFAGA,iCACuB,mBADvB,IACmC,EAAC,IAAD,KAASH,EAAT,MADnC,qDAEoB,2BAFpB,IAEwC,EAAC,IAAD,KAASA,EAAT,MAFxC,KAIA,EAAC,IAAD,KAASA,EAAT,MACA,iDACuC,uBADvC,4BAIJ,EAAC,IAAD,CAAOG,MAAO,8BACV,iBACO,gDADP,aACyD,2CACxC,2BAFjB,4CAIA,kBACQ,EAAC,IAAD,YADR,mDAC4E,EAAC,IAAD,UAD5E,mBAEgB,EAAC,IAAD,KAASH,EAAT,MAFhB,KAIA,qBACW,6BADX,UAGA,EAAC,IAAD,KAASA,EAAT,QAGR,EAAC,IAAD,CAASG,MAAO,4BACZ,EAAC,IAAD,CAAOA,MAAO,yCACV,0DACgD,sBADhD,KAGA,EAAC,IAAD,KAASH,EAAT,MACA,4BACkB,qCADlB,KAGA,EAAC,IAAD,KAASA,EAAT,MAUA,4BACkB,sCADlB,KAGA,EAAC,IAAD,KAASA,EAAT,MAUA,4BACkB,uCADlB,KAGA,EAAC,IAAD,KAASA,EAAT,MAUA,EAAC,IAAD,wFAGA,wEAC8D,wCAD9D,2DAEuD,wCAG3D,EAAC,IAAD,CAAOG,MAAO,sBACV,kEACwD,8BACjD,EAAC,IAAD,KAASH,EAAT,OAFP,KAIA,EAAC,IAAD,KAASA,EAAT,MACA,yBACe,EAAC,IAAD,KAASA,EAAT,MADf,eACoD,mCADpD,oCAIA,YACI,uBACY,EAAC,IAAD,UADZ,qDAEY,EAAC,IAAD,UAFZ,oDAGM,EAAC,IAAD,KAASA,EAAT,MAHN,4BAKI,EAAC,IAAD,KAASA,EAAT,OAMJ,iDAGI,EAAC,IAAD,KAASA,EAAT,QAGR,EAAC,IAAD,+BAAgC,EAAC,IAAD,KAASA,EAAT,MAAhC,KACA,uCAC6B,+BAD7B,KAGA,EAAC,IAAD,mCAAoC,uCAApC,KACA,4FACkF,kCADlF,KAIA,EAAC,IAAD,KACI,iGAEQ,oBAFR,eAIA,EAAC,IAAD,KAASA,EAAT,MACA,mEAGA,EAAC,IAAD,KAASA,EAAT,OAEJ,sCAC4B,EAAC,IAAD,KAASA,EAAT,MAD5B,OAKR,EAAC,IAAD,CAASG,MAAO,2BACZ,EAAC,IAAD,CAAOA,MAAO,eACV,kBACQ,uDADR,KAGA,6BACmB,EAAC,IAAD,UADnB,qBACuD,EAAC,IAAD,YADvD,wBAGA,EAAC,IAAD,KAASH,EAAT,MACA,sEAEc,EAAC,IAAD,KAASA,EAAT,MAFd,gEAKA,mDAGA,EAAC,IAAD,KAASA,EAAT,OAEJ,EAAC,IAAD,CAAOG,MAAO,SACV,kFAGA,YACI,yBAAc,sCAAd,2BACA,2DAIZ,EAAC,IAAD,KACI,EAAC,IAAD,CAAOA,MAAO,qBACV,kEACwD,gCADxD,KAEe,EAAC,IAAD,KAASH,EAAT,MAFf,MAIA,yBACe,gCADf,qCACyE,qBADzE,2CAIA,EAAC,IAAD,mEAGA,kEAIJ,EAAC,IAAD,CAAOG,MAAO,qBACV,8CACoC,gCADpC,+CAIA,4CACkC,EAAC,IAAD,KAASH,EAAT,MADlC,aAGA,EAAC,IAAD,KAASA,EAAT,MACA,WACI,mCADJ,aACyC,8BADzC,iCAGA,EAAC,IAAD,KAASA,EAAT,MACA,yCAGA,EAAC,IAAD,KAASA,EAAT,Y,2CClNpBF,EAAOC,QAAU,CAAC,SAAW,oB,m2MCGvBC,GAAIC,OAAOC,IAGF,eACX,OACI,EAAC,YAAD,KACI,EAAC,KAAD,CAASC,MAAO,4CACZ,EAAC,KAAD,CAAOA,MAAO,eACV,2CACiC,mBADjC,yBACkE,uBADlE,IACkF,EAAC,KAAD,0BADlF,SAEwB,EAAC,KAAD,UAFxB,KAIA,qBACW,uCADX,QAC+C,EAAC,KAAD,KAASH,GAAT,OAD/C,mEAIA,2DAES,EAAC,KAAD,UAFT,SAEiC,EAAC,KAAD,KAASA,GAAT,OAFjC,MAKJ,EAAC,KAAD,CAAOG,MAAO,mBACV,qBACW,6BADX,mBACgD,iCADhD,KAC2E,qBAD3E,mCAIA,EAAC,KAAD,KAASH,GAAT,SAGR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,yBACV,qBACW,EAAC,KAAD,KAASH,GAAT,OADX,iEAIA,EAAC,KAAD,KAASA,GAAT,OACA,YACI,YAAI,kCAAJ,KAAgC,EAAC,KAAD,KAASA,GAAT,OAAhC,MAA8D,EAAC,KAAD,KAASA,GAAT,QAE9D,YAAI,uCAAJ,KAAqC,EAAC,KAAD,KAASA,GAAT,MAArC,MAAmE,EAAC,KAAD,KAASA,GAAT,OAEnE,YAAI,qCAAJ,KAAmC,EAAC,KAAD,KAASA,GAAT,MAAnC,MAAiE,EAAC,KAAD,KAASA,GAAT,OAEjE,YAAI,0CAAJ,KACyB,EAAC,KAAD,KAASA,GAAT,MADzB,MACuD,EAAC,KAAD,KAASA,GAAT,OACvD,sBAIZ,EAAC,KAAD,CAASG,MAAO,qBACZ,EAAC,KAAD,CAAOA,MAAO,cACV,mBACS,+BADT,6HAIA,qCAC2B,gCAD3B,SACyD,kCADzD,KAGA,yBACe,sDADf,wBAGA,4DACkD,qBADlD,IACgE,wBADhE,2BAIA,EAAC,KAAD,KAASH,GAAT,MACA,2BACiB,kCADjB,KAC6C,EAAC,KAAD,KAASA,GAAT,MAD7C,MAGA,sBACY,kCADZ,SAC4C,8CAD5C,sBAEU,yBAFV,iBAIA,EAAC,KAAD,KAASA,GAAT,MACA,EAAC,KAAD,4BACwB,EAAC,KAAD,KAASA,GAAT,MADxB,6KAOR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,uBACV,YACI,iFACI,YACI,6BACkB,0BADlB,oBAE8B,EAAC,KAAD,KAASH,GAAT,MAF9B,IAGI,EAAC,KAAD,KAASA,GAAT,OAEJ,gEACqD,EAAC,KAAD,KAASA,GAAT,MADrD,IAEI,YACI,YAAI,EAAC,KAAD,KAASA,GAAT,MAAJ,SAAkD,mBAAlD,aACA,YAAI,EAAC,KAAD,KAASA,GAAT,MAAJ,SAAkD,mBAAlD,aAGR,oHAEqB,EAAC,KAAD,KAASA,GAAT,MAFrB,SAQhB,EAAC,KAAD,CAAOG,MAAO,uBACV,YACI,iFACI,YACI,4BACiB,2BADjB,WAC4C,gDACxC,EAAC,KAAD,KAASH,GAAT,MAFJ,QAE+C,qBAF/C,IAGI,EAAC,KAAD,KAASA,GAAT,OAEJ,gEACqD,EAAC,KAAD,KAASA,GAAT,MADrD,IAEI,YACI,YAAI,EAAC,KAAD,KAASA,GAAT,MAAJ,wBACA,YAAI,EAAC,KAAD,KAASA,GAAT,MAAJ,wBAGR,oHAEqB,EAAC,KAAD,KAASA,GAAT,MAFrB,UASpB,EAAC,KAAD,CAASG,MAAO,2CACZ,EAAC,KAAD,CAAOA,MAAO,2CACV,mBACS,+BADT,4GAE8C,EAAC,KAAD,KAASH,GAAT,MAF9C,mBAIA,EAAC,KAAD,KAASA,GAAT,MACA,2BAGA,EAAC,KAAD,KAASA,GAAT,MACA,0BACgB,0BADhB,IACmC,EAAC,KAAD,KAASA,GAAT,MADnC,mBAEa,EAAC,KAAD,KAASA,GAAT,MAFb,mBAEoD,aAFpD,MAGO,EAAC,KAAD,KAASA,GAAT,MAHP,sCAGuE,4BAHvE,YAIQ,mBAJR,mBAImC,EAAC,KAAD,KAASA,GAAT,MAJnC,KAMA,EAAC,KAAD,KAASA,GAAT,MACA,yFAGA,EAAC,KAAD,KAASA,GAAT,MACA,yGAEe,EAAC,KAAD,KAASA,GAAT,MAFf,sEAKA,YACI,iDACa,EAAC,KAAD,KAASA,GAAT,OAEb,mBAAQ,sBAAR,kBAAqC,EAAC,KAAD,KAASA,GAAT,SAI7C,EAAC,KAAD,CAAOG,MAAO,mCACV,kBAGA,YACI,wDAC6C,EAAC,KAAD,KAASH,GAAT,MAD7C,qCAGI,EAAC,KAAD,KAASA,GAAT,OAEJ,YACI,0BACgB,EAAC,KAAD,KAASA,GAAT,MADhB,qDAEiB,EAAC,KAAD,KAASA,GAAT,MAFjB,KAIA,EAAC,KAAD,KAASA,GAAT,MACA,oBACU,EAAC,KAAD,KAASA,GAAT,MADV,OAKR,sBAGA,YACI,YACI,gDAGA,EAAC,KAAD,KAASA,GAAT,OAEJ,oGAGA,YACI,+CACqC,wCADrC,KAGA,EAAC,KAAD,KAASA,GAAT,QAGR,4BACkB,EAAC,KAAD,UADlB,yCAGA,EAAC,KAAD,KACI,EAAC,KAAD,UADJ,uCAC0D,EAAC,KAAD,KAASA,GAAT,MAD1D,kDAMR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,oBACV,yBACe,yBADf,oEAGA,EAAC,KAAD,KAASH,GAAT,MACA,EAAC,KAAD,KAASA,GAAT,MACA,EAAC,KAAD,sEAEU,EAAC,KAAD,KAASA,GAAT,MAFV,iBAEmE,EAAC,KAAD,KAASA,GAAT,MAFnE,mHAMA,yCAC+B,wCAD/B,QACoE,wCADpE,KAGA,iBACO,qCADP,MAIJ,EAAC,KAAD,CAAOG,MAAO,wBACV,oDAC0C,oCAD1C,gEAIA,EAAC,KAAD,KAASH,GAAT,MACA,EAAC,KAAD,KAASA,GAAT,MACA,EAAC,KAAD,kFAEU,EAAC,KAAD,KAASA,GAAT,MAFV,MAEwD,EAAC,KAAD,KAASA,GAAT,MAFxD,mHAMA,yCAC+B,wCAD/B,KAGA,iBACO,uCADP,OAKR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,oCACV,kDACwC,+DADxC,W,spOCnQdH,EAAIC,OAAOC,IAGF,eACX,OACI,EAAC,WAAD,KACI,EAAC,IAAD,CAASC,MAAO,qCACZ,EAAC,IAAD,CAAOA,MAAO,kBACV,yFAC+E,4CAD/E,KAEuB,8BAFvB,mBAE6D,mCAF7D,OAMR,EAAC,IAAD,CAASA,MAAO,WACZ,EAAC,IAAD,CAAOA,MAAO,cACV,gCAGA,YACI,oBAAS,0BAAT,qBAA6C,EAAC,IAAD,KAASH,EAAT,OAC7C,oBAAS,uBAAT,kBAAuC,EAAC,IAAD,KAASA,EAAT,OACvC,0BAAe,EAAC,IAAD,KAASA,EAAT,MAAf,mBACU,EAAC,IAAD,KAASA,EAAT,MADV,oBAGA,8BAAmB,qCAAnB,8BAEJ,EAAC,IAAD,KACI,sGAEU,EAAC,IAAD,KAASA,EAAT,MAFV,0BAIA,EAAC,IAAD,KAASA,EAAT,OAEJ,oBACU,EAAC,IAAD,KAASA,EAAT,MADV,sBAGA,EAAC,IAAD,0CACsC,EAAC,IAAD,KAASA,EAAT,MADtC,OAKR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,kBACV,EAAC,IAAD,yBACqB,4CADrB,KAGA,uDAC6C,+BAD7C,gCAGA,EAAC,IAAD,KAASH,EAAT,MACA,EAAC,IAAD,8BAGA,gCAGA,EAAC,IAAD,KAASA,EAAT,MACA,0DACgD,8BADhD,QAC2E,sBAD3E,mDAE+C,qDAE/C,WACI,kBADJ,6BAIJ,EAAC,IAAD,CAAOG,MAAO,kBACV,yBACe,EAAC,IAAD,KAASH,EAAT,MADf,6CAGA,EAAC,IAAD,KAASA,EAAT,MAQA,EAAC,IAAD,KAASA,EAAT,MAMA,gDAGA,EAAC,IAAD,KAASA,EAAT,MACA,EAAC,IAAD,6BACyB,EAAC,IAAD,KAASA,EAAT,MADzB,mEAMR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,2BACV,+CAGA,YACI,YAAI,EAAC,IAAD,KAASH,EAAT,MAAJ,MAAoC,EAAC,IAAD,KAASA,EAAT,MAApC,qBAEJ,gBACM,oBADN,KAGA,sDAGA,EAAC,IAAD,KAASA,EAAT,MACA,EAAC,IAAD,KAASA,EAAT,MAGA,EAAC,IAAD,KAASA,EAAT,MAUA,EAAC,IAAD,KAASA,EAAT,MAUA,EAAC,IAAD,KAASA,EAAT,QAYR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,0BACV,+CAGA,YACI,YAAI,EAAC,IAAD,KAASH,EAAT,QAER,gBACM,oBADN,MAIJ,EAAC,IAAD,CAAOG,MAAO,2BACV,+CAGA,YACI,YAAI,EAAC,IAAD,KAASH,EAAT,OACJ,YAAI,EAAC,IAAD,KAASA,EAAT,OACJ,YAAI,EAAC,IAAD,KAASA,EAAT,QAER,gBACM,oBADN,MAIJ,EAAC,IAAD,CAAOG,MAAO,4BACV,+CAGA,YACI,gCACe,EAAC,IAAD,KAASH,EAAT,MADf,MACkD,EAAC,IAAD,KAASA,EAAT,MADlD,gBAEa,gCAFb,oBAEsD,sBAFtD,MAKJ,gBACM,oBADN,OAKR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,iCACV,iKAIA,uDAGA,EAAC,IAAD,KAASH,EAAT,OAEJ,EAAC,IAAD,CAAOG,MAAO,4BACV,0CACgC,EAAC,IAAD,KAASH,EAAT,MADhC,iDAGA,WACI,kBADJ,sCAGA,kDACwC,6BADxC,W,2DC9MpB,qCAEe,aAASI,GACpB,OACI,QAAIC,MAAOC,IAAMC,UACZH,EAAMI,a,2DCLnB,qCAEe,aAAUJ,GACrB,OACI,SAAKC,MAAOC,IAAMG,SACbL,EAAMI,a,utbCAbR,GAAIC,OAAOC,IAGF,eACX,OACI,EAAC,YAAD,KACI,EAAC,KAAD,CAASC,MAAO,4CACZ,EAAC,KAAD,CAAOA,MAAO,eACV,uFAGA,4CACkC,uCADlC,IACkE,EAAC,KAAD,KAASH,GAAT,OADlE,QAC8F,uCAD9F,IAEyB,EAAC,KAAD,KAASA,GAAT,OAFzB,SAEsD,sCAClD,EAAC,KAAD,KAASA,GAAT,OAHJ,KAKA,oDAGA,EAAC,KAAD,KAASA,GAAT,QAEJ,EAAC,KAAD,CAAOG,MAAO,mBACV,yEAGA,EAAC,KAAD,KAASH,GAAT,OACA,mEACyD,wCADzD,KAGA,EAAC,KAAD,KACKA,GADL,SAKR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,kBACV,oDAC0C,UACtCA,MAAO,kDAD+B,KAD1C,2BAIA,uCAC6B,8BAD7B,gFAIA,2DACiD,EAAC,KAAD,KAASH,GAAT,OADjD,MAIJ,EAAC,KAAD,CAAOG,MAAO,oBACV,yDAC+C,UAC3CA,MAAO,uFADoC,KAD/C,2BAKA,kEACwD,qBADxD,gCAEO,sCAFP,oBAIA,2DACiD,EAAC,KAAD,KAASH,GAAT,OADjD,OAKR,EAAC,KAAD,CAASG,MAAO,kBACZ,EAAC,KAAD,CAAOA,MAAO,aACV,2DACiD,wBADjD,6CAEc,wBAFd,wFAKA,EAAC,KAAD,KAASH,GAAT,QAEJ,EAAC,KAAD,CAAOG,MAAO,gBACV,2DACiD,0BADjD,mFAEmD,2BAFnD,oCAKA,EAAC,KAAD,KAASH,GAAT,OACA,EAAC,KAAD,KAASA,GAAT,SAGR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,iCAAsB,EAAC,KAAD,KAASH,GAAT,SAChC,mDACyC,EAAC,KAAD,KAASA,GAAT,OADzC,SACsE,2BAAgB,sCADtF,uBAE6C,4BAF7C,wBAGQ,EAAC,KAAD,KAASA,GAAT,OAHR,IAGgC,oCAHhC,WAGoE,EAAC,KAAD,KAASA,GAAT,OAHpE,IAG4F,oCAH5F,KAMA,EAAC,KAAD,KAASA,GAAT,OACA,EAAC,KAAD,oEACgE,8BADhE,KAGA,yBACe,EAAC,KAAD,KAASA,GAAT,OADf,qBAGA,EAAC,KAAD,KAASA,GAAT,OAMA,EAAC,KAAD,kFAGA,yBACe,EAAC,KAAD,KAASA,GAAT,OADf,qBAGA,EAAC,KAAD,KAASA,GAAT,OAMA,EAAC,KAAD,4CACwC,EAAC,KAAD,KAASA,GAAT,OADxC,KAGA,4HAIA,EAAC,KAAD,KAASA,GAAT,OAMA,qDAGA,EAAC,KAAD,KAASA,GAAT,QAEJ,EAAC,KAAD,CAAOG,MAAO,iCAAsB,EAAC,KAAD,KAASH,GAAT,OAAtB,2BACV,uDAC6C,EAAC,KAAD,KAASA,GAAT,OAD7C,MACwE,8CADxE,4BAE8C,uBAF9C,iCAE2F,sCAF3F,oBAKA,EAAC,KAAD,oEACgE,qCADhE,KAGA,sDAC4C,sCAD5C,iDAIA,EAAC,KAAD,KAASA,GAAT,OACA,yDAC+C,qDAD/C,mBAIA,qDAGA,EAAC,KAAD,KAASA,GAAT,QAEJ,EAAC,KAAD,CAAOG,MAAO,iCAAsB,EAAC,KAAD,KAASH,GAAT,OAAtB,yBACV,8CACoC,uBADpC,IACoD,4BADpD,QAC6E,mDAD7E,8DAIA,EAAC,KAAD,KAASA,GAAT,OACA,yDAC+C,wDAD/C,6EAIA,qDAGA,EAAC,KAAD,KAASA,GAAT,SAGR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,iCAAsB,EAAC,KAAD,KAASH,GAAT,OAAtB,aACV,4BACkB,EAAC,KAAD,KAASA,GAAT,OADlB,MAC4C,sBAD5C,8EAEsC,EAAC,KAAD,KAASA,GAAT,OAFtC,QAEkE,EAAC,KAAD,KAASA,GAAT,MAFlE,sBAMJ,EAAC,KAAD,CAAOG,MAAO,iCAAsB,EAAC,KAAD,KAASH,GAAT,MAAtB,YACV,4BACkB,EAAC,KAAD,KAASA,GAAT,MADlB,MAC4C,qBAD5C,qBAEQ,EAAC,KAAD,KAASA,GAAT,MAFR,MAEkC,EAAC,KAAD,KAASA,GAAT,MAFlC,+BAIA,6BACmB,sBADnB,kBACgD,yBADhD,eAEY,EAAC,KAAD,KAASA,GAAT,MAFZ,qEAOR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,iCAAsB,EAAC,KAAD,KAASH,GAAT,QAChC,0BACgB,oDADhB,0BAEoB,EAAC,KAAD,KAASA,GAAT,MAFpB,qCAE8E,yBAF9E,KAIA,EAAC,KAAD,KAASA,GAAT,MACA,2EACiE,uCADjE,KAGA,EAAC,KAAD,KAASA,GAAT,MAOA,EAAC,KAAD,KACI,mDAGA,EAAC,KAAD,KAASA,GAAT,MAOA,qDAGA,EAAC,KAAD,KAASA,GAAT,OAQJ,qDAGA,EAAC,KAAD,KAASA,GAAT,OAEJ,EAAC,KAAD,CAAOG,MAAO,iCAAsB,EAAC,KAAD,KAASH,GAAT,QAChC,+BACqB,8BADrB,yBACiE,EAAC,KAAD,KAASA,GAAT,MADjE,qCAEkC,2CAFlC,KAIA,EAAC,KAAD,KAASA,GAAT,MACA,iBACO,uCADP,aAGA,EAAC,KAAD,KAASA,GAAT,MAOA,qDAGA,EAAC,KAAD,KAASA,GAAT,QAGR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,iCACV,4DACkD,EAAC,KAAD,KAASH,GAAT,MADlD,sCAIA,EAAC,KAAD,KAASA,GAAT,MACA,iEACuD,EAAC,KAAD,KAASA,GAAT,MADvD,2BAEY,EAAC,KAAD,KAASA,GAAT,MAFZ,oBAIA,EAAC,KAAD,KAASA,GAAT,MASA,2EACiE,EAAC,KAAD,KAASA,GAAT,MADjE,MAIJ,EAAC,KAAD,CAAOG,MAAO,iCAAsB,EAAC,KAAD,KAASH,GAAT,QAChC,sCAC4B,iCAD5B,mBACqE,kDADrE,KAIA,yBACe,EAAC,KAAD,KAASA,GAAT,MADf,UAC6C,2BAD7C,wBAEQ,yBAFR,IAE0B,EAAC,KAAD,KAASA,GAAT,MAF1B,UAEwD,oCACpD,EAAC,KAAD,KAASA,GAAT,MAHJ,KAKA,EAAC,KAAD,KAASA,GAAT,MACA,0CACgC,2DADhC,6BAEY,EAAC,KAAD,KAASA,GAAT,MAFZ,mBAEmD,EAAC,KAAD,KAASA,GAAT,MAFnD,oEAG0C,EAAC,KAAD,KAASA,GAAT,MAH1C,MAKA,EAAC,KAAD,+BAC2B,EAAC,KAAD,CACvBU,KAAM,uGADiB,OAD3B,KAIA,uEAGA,EAAC,KAAD,KAASV,GAAT,MAMA,qDAGA,EAAC,KAAD,KAASA,GAAT,QAGR,EAAC,KAAD,CAASG,MAAO,oBACZ,EAAC,KAAD,CAAOA,MAAO,kBACV,8BAGA,EAAC,KAAD,KAASH,GAAT,MAMA,wGAGA,EAAC,KAAD,KAASA,GAAT,MACA,wEAC8D,kCAD9D,cAEU,EAAC,KAAD,KAASA,GAAT,MAFV,KAIA,EAAC,KAAD,KAASA,GAAT,MACA,WACI,EAAC,KAAD,KAASA,GAAT,MADJ,SACiC,qBADjC,qEAIA,sBACY,EAAC,KAAD,KAASA,GAAT,MADZ,yDAGA,EAAC,KAAD,KAASA,GAAT,MACA,wDAC8C,EAAC,KAAD,UAD9C,oBAGA,YACI,kCAAuB,EAAC,KAAD,KAASA,GAAT,OACvB,iDAAsC,EAAC,KAAD,KAASA,GAAT,OACtC,iDAAsC,EAAC,KAAD,KAASA,GAAT,QAE1C,EAAC,KAAD,KAASA,GAAT,OAEJ,EAAC,KAAD,CAAOG,MAAO,4BACV,oDAGA,EAAC,KAAD,KAASH,GAAT,MACA,oBACU,EAAC,KAAD,KAASA,GAAT,MADV,SAC0C,+BAD1C,0CAIA,mEAGA,EAAC,KAAD,KAASA,GAAT,QAGR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,oBACV,sDAGA,EAAC,KAAD,KAASH,GAAT,MAMA,WACI,qCADJ,6CAEO,EAAC,KAAD,KAASA,GAAT,MAFP,qCAEgE,+BAFhE,KAIA,8BACoB,kCADpB,gCAEW,uBAFX,kBAKJ,EAAC,KAAD,CAAOG,MAAO,0BACV,4DAGA,EAAC,KAAD,KAASH,GAAT,MAMA,6CACmC,gCADnC,kCAGA,WACI,qCADJ,oDACkF,wDADlF,KAIA,8BACoB,kCADpB,sCAEiB,uBAFjB,uB,0DC5ZpB,+FAQe,qBACX,OACI,aACI,gCACA,EAAC,IAAD,MACA,EAAC,IAAD,MACA,EAAC,IAAD,MACA,EAAC,IAAD,MACA,EAAC,IAAD,MACA,EAAC,IAAD,S,i1ECXNA,EAAIC,OAAOC,IAGF,eACX,OACI,EAAC,WAAD,KACI,EAAC,IAAD,CAASC,MAAO,SACZ,EAAC,IAAD,CAAOA,MAAO,YACV,YACI,YAAI,EAAC,IAAD,CAAMO,KAAM,sCAAZ,gCAGZ,EAAC,IAAD,CAAOP,MAAO,SACV,8BAGA,YACI,iDACA,mEAIZ,EAAC,IAAD,CAASA,MAAO,SACZ,EAAC,IAAD,CAAOA,MAAO,8BACV,kIAIA,EAAC,IAAD,KACI,YACI,OAAGO,KAAM,4CAAT,8BADJ,IACwF,iEAKhG,EAAC,IAAD,CAAOP,MAAO,QACV,wCAC8B,EAAC,IAAD,CAAMO,KAAM,6BAAZ,QAD9B,8CAIA,qCAC2B,4GAG3B,EAAC,IAAD,KACI,YAAI,EAAC,IAAD,CACAA,KAAM,sFADN,4BAMhB,EAAC,IAAD,CAASP,MAAO,aACZ,EAAC,IAAD,CAAOA,MAAO,sBACV,+CAGA,YACI,8CACA,2FAIZ,EAAC,IAAD,CAASA,MAAO,8BACZ,EAAC,IAAD,CAAOA,MAAO,UACV,2EACiE,EAAC,IAAD,KAASH,EAAT,MADjE,yCAIA,mDACyC,EAAC,IAAD,KAASA,EAAT,MADzC,OAKR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,mBACV,kFAGA,EAAC,IAAD,KAASH,EAAT,OAEJ,EAAC,IAAD,CAAOG,MAAO,mBACV,sFAGA,EAAC,IAAD,KAASH,EAAT,QAGR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,eACV,yCAC+B,uCAD/B,yCAEY,sBAFZ,KAIA,EAAC,IAAD,KACI,4BACgB,aADhB,eAEgB,aAFhB,eAGgB,aAHhB,kBAQR,EAAC,IAAD,CAAOA,MAAO,kBACV,yCAC+B,uCAD/B,mFAEiD,2BAFjD,qDAKA,EAAC,IAAD,KACI,4BACgB,aADhB,eAEgB,aAFhB,eAGgB,aAHhB,kBASZ,EAAC,IAAD,KACI,EAAC,IAAD,CAAOA,MAAO,0BACV,+CACqC,6BADrC,UACiE,8BADjE,yBAEgB,qCAFhB,KAKA,WACI,EAAC,IAAD,KAASH,EAAT,OAEJ,YACI,YACI,EAAC,IAAD,eADJ,mDAGA,YACI,EAAC,IAAD,UADJ,gDAGA,YACI,EAAC,IAAD,UADJ,eACkC,EAAC,IAAD,UADlC,8DAEyB,EAAC,IAAD,KAASA,EAAT,MAFzB,iDAOR,EAAC,IAAD,CAAOG,MAAO,kBACV,6CACmC,mDADnC,+DAIA,EAAC,IAAD,KAASH,EAAT,MACA,EAAC,IAAD,oEAEI,EAAC,IAAD,KAASA,EAAT,SAIZ,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,oBACV,wBACc,EAAC,IAAD,KAASH,EAAT,MADd,2GAIA,yCAC+B,EAAC,IAAD,KAASA,EAAT,MAD/B,2BAEO,EAAC,IAAD,KAASA,EAAT,MAFP,mDAGO,EAAC,IAAD,KAASA,EAAT,MAHP,4BAKA,8GAIJ,EAAC,IAAD,CAAOG,MAAO,gDACV,YACI,qBAAU,kCAAV,KACA,4BAAiB,0BAAjB,KACA,YAAI,kBAAJ,sBACA,YAAI,kBAAJ,uBACA,YAAI,kBAAJ,mDAIZ,EAAC,IAAD,CAASA,MAAO,uCACZ,EAAC,IAAD,CAAOA,MAAO,mBACV,+CACqC,mBADrC,KAGA,4BACkB,EAAC,IAAD,KAASH,EAAT,MADlB,KAGA,EAAC,IAAD,iCAC6B,EAAC,IAAD,UAD7B,kBAC8D,EAAC,IAAD,KAASA,EAAT,MAD9D,MAIJ,EAAC,IAAD,CAAOG,MAAO,sBACV,qDAC2C,wCAD3C,KAGA,4BACkB,EAAC,IAAD,KAASH,EAAT,MADlB,KAGA,EAAC,IAAD,6DACyD,EAAC,IAAD,KAASA,EAAT,MADzD,OAKR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,mBACV,6CACmC,8BADnC,KAGA,EAAC,IAAD,KACI,EAAC,IAAD,KAASH,EAAT,MADJ,2EAKJ,EAAC,IAAD,CAAOG,MAAO,aACV,6CACmC,iCADnC,KAGA,EAAC,IAAD,KACI,iDACuC,EAAC,IAAD,KAASH,EAAT,MADvC,KAGA,8BACoB,EAAC,IAAD,KAASA,EAAT,MADpB,UAEQ,EAAC,IAAD,KAASA,EAAT,MAFR,uCAIA,qCAC2B,EAAC,IAAD,KAASA,EAAT,MAD3B,4DAE8C,0BAF9C,uBAOZ,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,6BACV,kEACwD,8BADxD,KAGA,qGAGA,wFAIJ,EAAC,IAAD,CAAOA,MAAO,sBACV,kEACwD,iCADxD,KAGA,2G,8vYC1PdH,GAAIC,OAAOC,IAGF,eACX,OACI,EAAC,YAAD,KACI,EAAC,KAAD,CAASC,MAAO,kDACZ,EAAC,KAAD,CAAOA,MAAO,WACV,4FAGA,qCAC2B,sCAD3B,8JAKA,2BAGA,YACI,YAAI,EAAC,KAAD,KAASH,GAAT,OAAJ,QAAiD,mCAAjD,iBACA,YAAI,EAAC,KAAD,KAASA,GAAT,OAAJ,QAAiD,sCAAjD,qCAGA,YAAI,EAAC,KAAD,KAASA,GAAT,OAAJ,QAA+C,+CAA/C,mBAGA,YAAI,EAAC,KAAD,KAASA,GAAT,OAAJ,OAA+C,mCAEnD,0CACgC,wCADhC,IACiE,EAAC,KAAD,KAASA,GAAT,OADjE,aAGA,EAAC,KAAD,KAASA,GAAT,QAGR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,uBACV,uBACa,oBADb,IAC0B,EAAC,KAAD,KAASH,GAAT,MAD1B,oCAEQ,EAAC,KAAD,KAASA,GAAT,MAFR,uBAIA,sCAC4B,4BAD5B,qBACkE,EAAC,KAAD,KAASA,GAAT,MADlE,mBAEa,EAAC,KAAD,YAFb,KAIA,EAAC,KAAD,KAASA,GAAT,MACA,qEAGA,EAAC,KAAD,KAASA,GAAT,OAIJ,EAAC,KAAD,CAAOG,MAAO,kCACV,qCAC2B,qCAD3B,IACyD,EAAC,KAAD,KAASH,GAAT,MADzD,uBAEM,iCAFN,KAIA,EAAC,KAAD,KAASA,GAAT,MASA,wCAC8B,oCAD9B,IAC2D,EAAC,KAAD,KAASA,GAAT,MAD3D,KAGA,EAAC,KAAD,KAASA,GAAT,MAOA,0BAGA,EAAC,KAAD,KAASA,GAAT,MACA,uEAGA,EAAC,KAAD,KAASA,GAAT,QAGR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,2BACV,uBACa,wBADb,IAC8B,EAAC,KAAD,KAASH,GAAT,MAD9B,aAEU,EAAC,KAAD,KAASA,GAAT,MAFV,oCAEoE,EAAC,KAAD,KAASA,GAAT,MAFpE,uBAKA,4CACkC,EAAC,KAAD,KAASA,GAAT,MADlC,UACkE,EAAC,KAAD,KAASA,GAAT,MADlE,eAGA,EAAC,KAAD,KAASA,GAAT,MACA,EAAC,KAAD,KACI,+GAKJ,qEAGA,EAAC,KAAD,KAASA,GAAT,OAIJ,EAAC,KAAD,CAAOG,MAAO,sCACV,qCAC2B,qCAD3B,IACyD,EAAC,KAAD,KAASH,GAAT,MADzD,uBAEM,iCAFN,mCAIA,EAAC,KAAD,KAASA,GAAT,MASA,wCAC8B,oCAD9B,IAC2D,EAAC,KAAD,KAASA,GAAT,MAD3D,KAGA,EAAC,KAAD,KAASA,GAAT,MASA,0BAGA,EAAC,KAAD,KAASA,GAAT,MACA,uEAGA,EAAC,KAAD,KAASA,GAAT,MACA,EAAC,KAAD,4EAEc,EAAC,KAAD,KAASA,GAAT,MAFd,mCAEqE,EAAC,KAAD,KAASA,GAAT,MAFrE,6BAGqB,0CAHrB,OAOR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOG,MAAO,wBACV,sBACY,sDACR,EAAC,KAAD,KAASH,GAAT,MAFJ,oCAGQ,EAAC,KAAD,KAASA,GAAT,MAHR,uBAKA,EAAC,KAAD,KAASA,GAAT,MACA,EAAC,KAAD,KACI,+FAGA,EAAC,KAAD,KAASA,GAAT,OAEJ,qEAGA,EAAC,KAAD,KAASA,GAAT,OAIJ,EAAC,KAAD,CAAOG,MAAO,oCACV,qCAC2B,qCAD3B,IACyD,EAAC,KAAD,KAASH,GAAT,MADzD,uBAEM,iCAFN,mCAIA,EAAC,KAAD,KAASA,GAAT,MASA,wCAC8B,oCAD9B,IAC2D,EAAC,KAAD,KAASA,GAAT,MAD3D,KAGA,EAAC,KAAD,KAASA,GAAT,MASA,0BAGA,EAAC,KAAD,KAASA,GAAT,MACA,uEAGA,EAAC,KAAD,KAASA,GAAT,QAGR,EAAC,KAAD,CAASG,MAAO,uBACZ,EAAC,KAAD,CAAOA,MAAO,qBACV,iDACuC,EAAC,KAAD,KAASH,GAAT,MADvC,UACqE,uCADrE,KAGA,2BACiB,qBADjB,iBAC4C,oBAD5C,KAGA,4BAGA,YACI,6BAAkB,EAAC,KAAD,KAASA,GAAT,MAAlB,KACA,0BAAe,EAAC,KAAD,KAASA,GAAT,MAAf,KACA,oCAAyB,EAAC,KAAD,UAAzB,cAAsD,EAAC,KAAD,KAASA,GAAT,MAAtD,oBACO,EAAC,KAAD,KAASA,GAAT,MADP,KAGA,0BAAe,EAAC,KAAD,KAASA,GAAT,MAAf,OAGR,EAAC,KAAD,CAAOG,MAAO,iBACV,2DACiD,EAAC,KAAD,KAASH,GAAT,MADjD,KAGA,sBACY,uBADZ,mBAC2C,EAAC,KAAD,YAD3C,sBAGA,4CACkC,wCADlC,aAEO,EAAC,KAAD,KAASA,GAAT,MAFP,cAEuD,oBAFvD,KAIA,4BAGA,YACI,6BAAkB,EAAC,KAAD,KAASA,GAAT,MAAlB,WAA4E,mCAE5E,0BAAe,EAAC,KAAD,KAASA,GAAT,OACf,YACI,0BAGA,EAAC,KAAD,KAASA,GAAT,OAeJ,0BAAe,EAAC,KAAD,KAASA,GAAT,QAEnB,EAAC,KAAD,uBACmB,EAAC,KAAD,KAASA,GAAT,MADnB,qF","file":"route-CalcoloNumerico.chunk.cf22a.js","sourcesContent":["// extracted by mini-css-extract-plugin\nmodule.exports = {\"red\":\"red__2y1B_\",\"orange\":\"orange__dD2kx\",\"yellow\":\"yellow__OEpwl\",\"lime\":\"lime__CVe41\",\"cyan\":\"cyan__26ZAg\",\"blue\":\"blue__LO7Xm\",\"magenta\":\"magenta__1Akee\",\"example\":\"example__2PzAa\"};","import {Fragment} from \"preact\";\nimport {ILatex, Panel, PLatex, Section, Todo} from \"bluelib\";\nimport Example from \"../../components/Example\";\n\nconst r = String.raw;\n\n\nexport default function () {\n return (\n \n Si vuole trovare una funzione in grado di approssimarne un'altra, di cui si conoscono\n però solo alcuni punti.\n \n I punti sono detti nodi \n Dato un insieme di punti, esistono infinite funzioni interpolanti.\n \n Il teorema fondamentale dell'algebra dice che esiste una sola\n interpolante polinomiale che interpola un dato insieme di punti.\n \n Con \n La sua forma canonica sarà:\n \n È possibile scrivere la forma canonica come matrice:\n \n Costruiamo la matrice di Vandermonde:\n \n Costruiamo il vettore delle incognite:\n \n Costruiamo il vettore dei termini noti:\n \n È efficace perchè una volta calcolati i coefficienti essi valgono per tutti i punti, ma\n ha come svantaggio che la matrice di Vandermonde è spesso malcondizionata.\n \n È possibile scrivere il polinomio di interpolazione raccogliendo\n le \n I polinomi \n Tutti insieme formano la base di Lagrange.\n \n Questo metodo permette di calcolare il valore del polinomio di interpolazione in un singolo\n punto:\n \n Si può risparmiare tempo di calcolo calcolando una singola volta il numeratore\n con tutti i termini:\n \n E poi dividendo per il termine che andrebbe escluso:\n \n Ha costo computazionale \n È l'errore compiuto durante l'interpolazione.\n \n Se la funzione \n In particolare, è interessante la sua norma a\n infinito, \n Un teorema dice che esso è uguale a:\n \n L'errore nell'interpolazione dipende principalmente da due fattori:\n \n Fenomeno che si verifica cercando di interpolare la funzione di\n Runge ( \n Scegliendo nodi equispaziati, l'errore di interpolazione sarà enorme vicino ai due\n estremi dell'intervallo.\n \n Si evita scegliendo i nodi in una maniera diversa.\n \n Nodi ottenuti partizionando una semicirconferenza, e proiettando le partizioni sul\n diametro.\n \n La formula usata per ottenere \n Proprietà di min-max: sono la scelta ottimale dei punti di interpolazione.\n \n In particolare, si ha che:\n \n Si vogliono trovare i punti (zeri) in cui una funzione continua \n Per il teorema del valore medio, se \n Denominiamo il punto in cui la funzione\n vale \n Più la derivata prima della funzione si avvicina allo 0, peggio il problema\n sarà condizionato.\n \n Indice \n Sono metodi iterativi in grado di ridurre sempre di più l'intervallo in cui è definita la\n funzione, facendolo convergere allo zero desiderato.\n \n Alcuni di essi sono il metodo dicotomico e il metodo regula falsi.\n \n Richiedono una valutazione di funzione non-lineare ad ogni iterazione.\n \n Ad ogni iterazione, l'intervallo viene sempre almeno dimezzato; si ha, pertanto,\n che:\n \n Hanno quindi convergenza lineare ( \n Il loro criterio di arresto è un numero di iterazioni prefissato che dipende\n dalla tolleranza sull'errore:\n \n Sono metodi iterativi che funzionano in modo molto simile ai metodi iterativi per i\n sistemi lineari, utilizzando una funzione \n Che diventa:\n \n Sfruttano i punti fissi \n Si può raggiungere iterativamente ad un punto fisso attraverso la formula:\n \n Non si conosce in anticipo il numero di iterazioni necessarie per soddisfare la\n tolleranza \n Se:\n \n La funzione \n (dove \n Allora:\n \n Il punto fisso esiste ed è unico:\n \n Vale la seguente disequazione di maggiorazione dell'errore:\n \n Più è piccolo \n Sfrutta la continuità delle funzioni per ottenere una convergenza di ordine più alto.\n \n Ha costo computazionale di 2 valutazioni di funzione più 2 valutazioni di derivata.\n \n Ha convergenza quadratica.\n \n È come il metodo di Newton, ma usa il rapporto incrementale, in modo da poter essere\n applicato a funzioni non continue.\n \n Ha costo computazionale di 3 valutazioni di funzione.\n \n Ha convergenza superlineare.\n \n È possibile usare questi metodi per approssimare le soluzioni di sistemi non-lineari.\n \n Invece che costruire una singola funzione che interpola tutti i punti, per ogni intervallo\n tra due punti (sottointervallo) si costruisce una funzione apposta.\n \n Interpolanti che:\n \n Significa che agli estremi dell'intervallo, i valori di tutte le derivate fino al\n grado \n Hanno \n Per ogni sottointervallo, costruiamo una funzione lineare passante per i due estremi:\n \n Il loro errore è:\n \n Ha come vantaggi complessità computazionale molto più bassa e l'assenza del\n fenomeno di Runge, ma allo stesso tempo si perde la derivabilità della funzione.\n \n Non hanno gradi di libertà.\n \n Spline con \n Esse hanno la seguente equazione:\n \n Classe di spline cubiche in cui:\n \n È unica.\n \n Forma il seguente sistema di equazioni:\n \n Classe di spline cubiche in cui:\n \n È unica.\n \n Classe di spline cubiche in cui:\n \n È unica.\n \n Classe di spline cubiche in cui:\n \n È unica.\n \n Tra tutte le funzioni che interpolano dei punti, le tre classi di funzioni sopraelencate sono\n quelle che interpolano la funzione più \"dolcemente\".\n \n Per loro è valida la seguente proprietà:\n \n Più diminuisce la lunghezza \n Non si verifica il fenomeno di Runge.\n \n Si ha un'interpolazione anche della derivata prima.\n \n
\n \n
\n \n
\n \n
\n \n
\n \n
\n \n
\n \n
\n \n
\n
\n se \n
\n \n
\n \n
\n \n
\n \n
\n \n
\n \n
\n \n
\n
\n Dato un sistema di equazioni lineari, si vuole trovare la sua soluzione.\n
\n\n In forma matriciale, avrà una matrice dei coefficienti
\n L'equazione matriciale del sistema è:\n
\n\n Il condizionamento della risoluzione di sistemi lineari è:\n
\n\n In particolare, è segnato in giallo nella formula il numero di condizionamento:\n
\n\n Metodi che trovano la soluzione esatta* di un sistema lineare.\n
\n\n Tipicamente prevedono la fattorizzazione della matrice dei coefficienti in due\n sottomatrici più facili da risolvere.\n
\n\n Generalmente hanno una complessità temporale
\n Metodi che trovano una soluzione imperfetta* di\n un sistema lineare.\n
\n\n Tipicamente prevedono l'applicazione ripetuta di un metodo, in base al quale cambia\n la velocità di convergenza alla soluzione.\n
\n\n Generalmente hanno una complessità temporale
\n Se la matrice dei coefficienti del sistema è diagonale, allora è possibile trovare la\n soluzione dividendo ogni termine noto per l'unico coefficiente diverso da zero presente\n nella sua riga:\n
\n\n Se la matrice dei coefficienti del sistema è triangolare inferiore o superiore, allora è\n possibile trovare la soluzione effettuando una sostituzione all'avanti oppure\n all'indietro:\n
\n\n Se tutti i valori sulla diagonale di
\n La matrice
\n La matrice
\n Il sistema può essere poi risolto applicando due volte il metodo di sostituzione (all'avanti e\n all'indietro):\n
\n\n Questo metodo ha costo computazionale:\n
\n\n È possibile applicare la fattorizzazione
\n Alla formula precedente si aggiunge una matrice di permutazione che indica quali righe\n sono state scambiate:\n
\n\n Per massimizzare la stabilità, si cerca di usare come perno l'elemento più grande della\n colonna.\n
\n\n Questo metodo ha costo computazionale:\n
\n\n È possibile anche permettere il pivoting sulle colonne per aumentare\n ulteriormente la stabilità dell'algoritmo, a costo di maggiore costo computazionale:\n
\n\n Per massimizzare la stabilità, si cerca di ordinare in modo decrescente la diagonale,\n assicurandoci che il primo perno sia più grande del secondo e così via.\n
\n\n Questo metodo ha costo computazionale:\n
\n\n Se la matrice
\n Se la matrice
\n Per evitare il fill-in, è necessario riordinare la\n matrice
\n È possibile ridurre la complessità computazionale della\n fattorizzazione
\n In questo caso, si calcola solo la matrice L, utilizzando il metodo di pavimentazione.\n
\n\n La prima colonna della matrice sarà:\n
\n\n La seconda colonna della matrice sarà:\n
\n\n Questo metodo ha costo computazionale:\n
\n\n È possibile dare stabilità forte alla fattorizzazione
\n Il metodo di pavimentazione diventa:\n
\n\n Questo metodo ha costo computazionale:\n
\n\n Matrice ricavata dalla seguente formula, dove
\n Se moltiplicata per per la matrice da cui proviene
\n Si calcola con una complessità computazionale nell'ordine di
\n Metodo che fornisce una maggiore stabilità a costo di una maggiore complessità\n computazionale.\n
\n\n La matrice
\n Le matrici si ottengono dal prodotto delle trasformazioni di Householder (che concatenate\n formano
\n Una volta fattorizzata, il sistema si può risolvere con:\n
\n\n Questo metodo ha costo computazionale:\n
\n\n Se si pone che:\n
\n\n Allora la formula generale di un sistema lineare può anche essere scritta in questo modo:\n
\n\n È particolarmente utile perchè ci permette di definire un algoritmo ricorsivo che\n trovi
\n
\n Ponendo
\n Possiamo ottenere alcuni metodi separando
\n Un metodo è convergente se e solo se:\n
\n\n (dove
\n Perchè un metodo sia convergente, è sufficiente che:\n
\n\n Il metodo di Jacobi si ottiene ponendo:\n
\n\n Spostamenti simultanei: Permette di ottenere ogni componente\n di
\n Se la matrice è diagonale dominante, allora il metodo di\n Jacobi converge sicuramente.\n
\n\n Il metodo di Gauss-Seidel si ottiene ponendo:\n
\n\n Ha una velocità di convergenza maggiore o uguale rispetto al metodo di Jacobi.\n
\n\n Spostamenti successivi: Non è parallelizzabile, perchè ogni componente dipende da\n quelle calcolate in precedenza.\n
\n\n Se la matrice è diagonale dominante, allora il metodo di\n Gauss-Seidel converge sicuramente.\n
\n\n E' composto da:\n
\n\n Prima di iniziare a studiare Calcolo Numerico, potrebbe essere una buona idea ripassare un\n pochino Algebra Lineare:\n
\n\n Ho provato a fare un deck Anki con tutte le\n formule di Calcolo numerico.\n
\n\n Sappiatemi dire com'è! Io non l'ho usato moltissimo perchè ho studiato scrivendo questa\n pagina di Appuntiweb...\n
\n\n Particolari algoritmi che hanno:\n
\n\n Con i numeri floating point può capitare che un certo numero
\n In tal caso, il numero si indica con
\n È la differenza tra il numero desiderato e il numero rappresentato:\n
\n\n Indica quanto il numero rappresentato differisce dal numero desiderato:\n
\n\n Metodo con cui gestire gli underflow floating point: le cifre meno significative\n vengono rimosse.\n
\n\n 1.00 → 1.0\n
\n 1.01 → 1.0
\n 1.10 → 1.1
\n 1.11 → 1.1\n
\n Metodo con cui gestire gli underflow floating point: se la cifra più significativa di\n quelle che devono essere rimosse è 1, allora aumenta di 1 anche quella meno signficativa\n che viene tenuta.\n
\n\n 1.00 → 1.0\n
\n 1.01 → 1.0
\n 1.10 → 1.1
\n 1.11 → 10.\n
\n Un numero reale rappresentato in virgola mobile ha un errore relativo minore o\n uguale alla precisione\n di macchina:\n
\n\n
\n Associa un valore reale al suo corrispondente valore floating point, utilizzando uno dei\n due metodi di gestione dell'undeflow.\n
\n\n L'insieme
\n Operazioni tra elementi di
\n Il teorema della precisione di macchina si applica quindi anche ai risultati delle operazioni.\n
\n\n Errore derivato da underflow sui dati.\n
\n\n Si indica con
\n Errore derivato da underflow durante l'esecuzione dell'algoritmo.\n
\n\n Si indica con
\n Sensibilità di un problema all'errore inerente.\n
\n\n Sensibilità di un problema all'errore algoritmico.\n
\n\n Cerchiamo un algoritmo che risolva
\n Calcolare prima
\n Calcolare direttamente
\n È il coefficiente di proporzionalità tra i dati e l'errore inerente.\n
\n\n Essendo sempre maggiore di uno, si può dire che sia un coefficiente di amplificazione.\n
\n\n Minore è l'indice di condizionamento, meglio condizionato è un problema.\n
\n\n È il coefficiente di proporzionalità tra i dati e l'errore algoritmico.\n
\n\n Essendo sempre maggiore di uno, si può dire che sia un coefficiente di amplificazione.\n
\n\n Interpolare dati sperimentali non fornisce quasi mai un modello del fenomeno.\n
\n\n Vogliamo costruire una funzione di regressione che, dati molti più dati del grado della\n funzione, minimizzi il quadrato della distanza tra i punti sperimentali e i punti della funzione\n di regressione.\n
\n\n Denominiamo:\n
\n\n L'obiettivo è minimizzare l'errore di approssimazione
\n Trova la retta
\n Essendo una retta, avrà due parametri: il termine noto
\n L'errore da minimizzare per ricavare i parametri sarà:\n
\n\n Possiamo costruire una matrice di regressione
\n Inoltre, se costruiamo il vettore dei parametri
\n Avremo che:\n
\n\n Inoltre, potremo calcolare l'errore attraverso la norma:\n
\n\n Trova il polinomio
\n Essendo un polinomio di grado
\n La regressione lineare è un caso particolare di regressione generale in cui i parametri sono\n 2!\n
\n\n L'errore da minimizzare per ricavare i parametri sarà:\n
\n\n Possiamo costruire una matrice di regressione
\n Inoltre, se costruiamo il vettore dei parametri
\n Avremo che:\n
\n\n Inoltre, potremo calcolare l'errore attraverso la norma:\n
\n\n Trova i coefficienti della combinazione lineare\n
\n La regressione polinomiale è un caso particolare di regressione generale in cui:\n
\n\n L'errore da minimizzare per ricavare i parametri sarà:\n
\n\n Possiamo costruire una matrice di regressione
\n Inoltre, se costruiamo il vettore dei parametri
\n Avremo che:\n
\n\n Inoltre, potremo calcolare l'errore attraverso la norma:\n
\n\n Caso che prevede che le colonne di
\n La soluzione esiste sempre, ed è unica.\n
\n\n Per trovarla:\n
\n\n Caso che non preclude alcuna composizione di
\n Ci sono infinite soluzioni, con
\n Si cerca sempre di trovare la soluzione di norma minima, che,\n se
\n Per trovarla:\n
\n\n Calcoliamo:\n
\n