{"version":3,"sources":["webpack:///./components/Example.less","webpack:///./components/old/plus.css","webpack:///./components/Elements/Box.less","webpack:///./components/Latex.js","webpack:///./components/Elements/Panel.less","webpack:///./components/example.js","webpack:///../src/index.js","webpack:///./components/old/minus.js","webpack:///./components/Elements/Box.js","webpack:///./components/old/split.css","webpack:///./components/old/plus.js","webpack:///./components/Elements/Panel.js","webpack:///./components/old/split.js","webpack:///./components/old/minus.css","webpack:///./components/Latex.css","webpack:///./routes/statistica.js","webpack:///./contexts/LatexDefaultInline.js"],"names":["module","exports","props","renderColor","useContext","LatexRenderColor","defaultInline","LatexDefaultInline","src","undefined","inline","children","alt","title","class","style","latex","example","getHookState","index","options","_hook","currentComponent","hooks","__hooks","_list","_pendingEffects","length","push","useState","initialState","useReducer","invokeOrReturn","reducer","init","hookState","currentIndex","_component","_value","nextValue","action","setState","useEffect","callback","args","state","argsChanged","_args","useLayoutEffect","_renderCallbacks","useRef","initialValue","useMemo","current","useImperativeHandle","ref","createHandle","concat","factory","_factory","useCallback","context","provider","_id","_defaultValue","sub","value","useDebugValue","formatter","flushAfterPaintEffects","afterPaintEffects","some","component","_parentDom","forEach","invokeCleanup","invokeEffect","e","_catchError","_vnode","hook","_cleanup","result","oldArgs","newArgs","arg","f","prevRaf","oldBeforeRender","_render","oldAfterDiff","diffed","oldCommit","_commit","oldBeforeUnmount","unmount","vnode","c","requestAnimationFrame","raf","done","clearTimeout","timeout","cancelAnimationFrame","setTimeout","window","commitQueue","filter","cb","Minus","render","minus","this","Component","BoxColors","Object","freeze","RED","red","ORANGE","orange","YELLOW","yellow","LIME","lime","CYAN","cyan","BLUE","blue","MAGENTA","magenta","DEFAULT","default","color","box","Plus","plus","contents","Split","Array","isArray","map","element","splitchild","split","splitparent","r","String","raw","Statistica","Provider","href","start","createContext"],"mappings":"4EACAA,EAAOC,QAAU,CAAC,QAAU,mB,mBCA5BD,EAAOC,QAAU,CAAC,KAAO,gB,mBCAzBD,EAAOC,QAAU,CAAC,IAAM,aAAa,QAAU,iBAAiB,IAAM,aAAa,OAAS,gBAAgB,OAAS,gBAAgB,KAAO,cAAc,KAAO,cAAc,KAAO,cAAc,QAAU,mB,mCCD9M,yEAKe,aAASC,GAEvB,IAAIC,EAAcC,YAAWC,KACzBC,EAAgBF,YAAWG,KAa/B,OACC,SAAKC,IAAG,gDAXWC,IAAjBP,EAAMQ,OACIJ,EAGAJ,EAAMQ,QAGM,WAAa,IAC1B,aAAyBP,EAAzB,KAAyCD,EAAMS,SAA/C,MAITC,IAAKV,EAAMS,SACXE,MAAOX,EAAMS,SACbG,MAAOC,IAAMC,W,yCCxBjBhB,EAAOC,QAAU,CAAC,MAAQ,eAAe,SAAW,oB,mCCDpD,+CAGe,aAASC,GACpB,OACI,SAAKY,MAAOC,IAAME,SACbf,EAAMS,a,0DCgFnB,SAASO,EAAaC,GACjBC,UAAQC,KAAOD,UAAQC,IAAMC,OAM3BC,EACLD,EAAiBE,MAChBF,EAAiBE,IAAU,CAAEC,GAAO,GAAIC,IAAiB,YAEvDP,GAASI,EAAME,GAAME,QACxBJ,EAAME,GAAMG,KAAK,IAEXL,EAAME,GAAMN,GAMb,SAASU,EAASC,UACjBC,EAAWC,EAAgBF,GASnC,SAAgBC,EAAWE,EAASH,EAAcI,OAE3CC,EAAYjB,EAAakB,YAC1BD,EAAUE,MACdF,EAAUE,IAAaf,EAEvBa,EAAUG,GAAS,CACjBJ,EAAiDA,EAAKJ,GAA/CE,SAA0BF,GAElC,gBACOS,EAAYN,EAAQE,EAAUG,GAAO,GAAIE,GAC3CL,EAAUG,GAAO,KAAOC,IAC3BJ,EAAUG,GAAO,GAAKC,EACtBJ,EAAUE,IAAWI,SAAS,QAM3BN,EAAUG,GAOX,SAASI,EAAUC,EAAUC,OAE7BC,EAAQ3B,EAAakB,KACvBU,EAAYD,EAAME,IAAOH,KAC5BC,EAAMP,GAASK,EACfE,EAAME,IAAQH,EAEdtB,EAAiBE,IAAQE,IAAgBE,KAAKiB,IAQzC,SAASG,EAAgBL,EAAUC,OAEnCC,EAAQ3B,EAAakB,KACvBU,EAAYD,EAAME,IAAOH,KAC5BC,EAAMP,GAASK,EACfE,EAAME,IAAQH,EAEdtB,EAAiB2B,IAAiBrB,KAAKiB,IAIlC,SAASK,EAAOC,UACfC,GAAQ,iBAAO,CAAEC,QAASF,KAAiB,IAQnD,SAAgBG,EAAoBC,EAAKC,EAAcZ,GACtDI,GACC,WACmB,mBAAPO,EAAmBA,EAAIC,KACzBD,IAAKA,EAAIF,QAAUG,OAErB,MAARZ,EAAeA,EAAOA,EAAKa,OAAOF,IAQ7B,SAASH,EAAQM,EAASd,OAE1BC,EAAQ3B,EAAakB,YACvBU,EAAYD,EAAME,IAAOH,IAC5BC,EAAME,IAAQH,EACdC,EAAMc,IAAWD,EACTb,EAAMP,GAASoB,KAGjBb,EAAMP,GAOP,SAASsB,EAAYjB,EAAUC,UAC9BQ,GAAQ,kBAAMT,IAAUC,GAMzB,SAASxC,EAAWyD,OACpBC,EAAWxC,EAAiBuC,QAAQA,EAAQE,SAC7CD,EAAU,OAAOD,EAAQG,OACxBnB,EAAQ3B,EAAakB,YAEP,MAAhBS,EAAMP,KACTO,EAAMP,MACNwB,EAASG,IAAI3C,IAEPwC,EAAS5D,MAAMgE,MAOhB,SAASC,EAAcD,EAAOE,GAChChD,UAAQ+C,eACX/C,UAAQ+C,cAAcC,EAAYA,EAAUF,GAASA,GAyBvD,SAASG,IACRC,EAAkBC,MAAK,eAClBC,EAAUC,QAEZD,EAAUhD,IAAQE,IAAgBgD,QAAQC,GAC1CH,EAAUhD,IAAQE,IAAgBgD,QAAQE,GAC1CJ,EAAUhD,IAAQE,IAAkB,GACnC,MAAOmD,UACRL,EAAUhD,IAAQE,IAAkB,GACpCN,UAAQ0D,IAAYD,EAAGL,EAAUO,YAKpCT,EAAoB,GA4CrB,SAASK,EAAcK,GAClBA,EAAKC,GAAUD,EAAKC,IAOzB,SAASL,EAAaI,OACfE,EAASF,EAAK1C,KACC,mBAAV4C,IAAsBF,EAAKC,EAAWC,GAOlD,SAASpC,EAAYqC,EAASC,UACrBD,GAAWC,EAAQb,MAAK,SAACc,EAAKlE,UAAUkE,IAAQF,EAAQhE,MAGjE,SAASa,EAAeqD,EAAKC,SACT,mBAALA,EAAkBA,EAAED,GAAOC,E,wVA9UtClD,EAGAd,EAWAiE,E,YARAjB,EAAoB,GAEpBkB,EAAkBpE,UAAQqE,IAC1BC,EAAetE,UAAQuE,OACvBC,EAAYxE,UAAQyE,IACpBC,EAAmB1E,UAAQ2E,QAK/B3E,UAAQqE,IAAU,YACbD,GAAiBA,EAAgBQ,GAGrC5D,EAAe,GADfd,EAAmB0E,EAAM3D,KAGJb,MACpBF,EAAiBE,IAAQE,IAAgBgD,QAAQC,GACjDrD,EAAiBE,IAAQE,IAAgBgD,QAAQE,GACjDtD,EAAiBE,IAAQE,IAAkB,KAI7CN,UAAQuE,OAAS,YACZD,GAAcA,EAAaM,OAEzBC,EAAID,EAAM3D,OACX4D,OAEC1E,EAAQ0E,EAAEzE,IACZD,GACCA,EAAMG,IAAgBC,SA0QJ,IAzQV2C,EAAkB1C,KAAKqE,IAyQRV,IAAYnE,UAAQ8E,yBAC/CX,EAAUnE,UAAQ8E,wBAvBpB,SAAwBvD,OAQnBwD,EAPEC,EAAO,WACZC,aAAaC,GACbC,qBAAqBJ,GACrBK,WAAW7D,IAEN2D,EAAUE,WAAWJ,EAlRR,KAqRE,oBAAVK,SACVN,EAAMD,sBAAsBE,MAcA/B,MAtQ9BjD,UAAQyE,IAAU,SAACG,EAAOU,GACzBA,EAAYnC,MAAK,gBAEfC,EAAUvB,IAAiByB,QAAQC,GACnCH,EAAUvB,IAAmBuB,EAAUvB,IAAiB0D,QAAO,mBAC9DC,EAAGtE,IAASsC,EAAagC,MAEzB,MAAO/B,GACR6B,EAAYnC,MAAK,YACZ0B,EAAEhD,MAAkBgD,EAAEhD,IAAmB,OAE9CyD,EAAc,GACdtF,UAAQ0D,IAAYD,EAAGL,EAAUO,SAI/Ba,GAAWA,EAAUI,EAAOU,IAGjCtF,UAAQ2E,QAAU,YACbD,GAAkBA,EAAiBE,OAEjCC,EAAID,EAAM3D,OACX4D,OAEC1E,EAAQ0E,EAAEzE,OACZD,MAEFA,EAAME,GAAMiD,SAAQ,mBAAQM,EAAKC,GAAYD,EAAKC,OACjD,MAAOJ,GACRzD,UAAQ0D,IAAYD,EAAGoB,EAAElB,S,0GCzEP8B,E,gLACpBC,OAAA,WACC,OAAO,UAAMhG,MAAOC,IAAMgG,OAAQC,KAAK9G,MAAMS,W,aAFZsG,a,2DCHnC,qCAEaC,EAAYC,OAAOC,OAAO,CACnCC,IAAKtG,IAAMuG,IACXC,OAAQxG,IAAMyG,OACdC,OAAQ1G,IAAM2G,OACdC,KAAM5G,IAAM6G,KACZC,KAAM9G,IAAM+G,KACZC,KAAMhH,IAAMiH,KACZC,QAASlH,IAAMmH,QACfC,QAASpH,IAAMqH,UAGJ,aAAUlI,GACrB,IAAImI,EAAQnB,EAAUiB,QAKtB,OAJGjI,EAAMmI,QACLA,EAAQnI,EAAMmI,OAId,SAAKvH,MAAOC,IAAMuH,IAAM,IAAMD,GACzBnI,EAAMS,a,yCCpBnBX,EAAOC,QAAU,CAAC,MAAQ,eAAe,YAAc,qBAAqB,WAAa,sB,0GCEpEsI,E,gLACpBzB,OAAA,WACC,OAAO,UAAMhG,MAAOC,IAAMyH,MAAOxB,KAAK9G,MAAMS,W,aAFZsG,a,2DCHlC,iDAGe,aAAS/G,GACvB,OACC,EAAC,IAAD,CAAKmI,MAAOnI,EAAMmI,OACjB,QAAIvH,MAAOC,IAAMF,OACfX,EAAMW,OAER,SAAKC,MAAOC,IAAM0H,UAChBvI,EAAMS,c,kICPU+H,E,gLACpB5B,OAAA,WACI,IAKOnG,EALHE,EAAQ,KAcf,YAb2BJ,IAArBuG,KAAK9G,MAAMW,QACPA,EAAS,YAAKmG,KAAK9G,MAAMW,QAKzBF,EADDgI,MAAMC,QAAQ5B,KAAK9G,MAAMS,UACbqG,KAAK9G,MAAMS,SAASkI,KAAI,SAAAC,GAC/B,OAAQ,SAAKhI,MAAOC,IAAMgI,YAAaD,MAIhC,SAAKhI,MAAOC,IAAMgI,YAAa/B,KAAK9G,MAAMS,UAGxD,SAAKG,MAAOC,IAAMiI,OACVnI,EACD,SAAKC,MAAOC,IAAMkI,aAActI,K,aAnBbsG,a,yCCFnCjH,EAAOC,QAAU,CAAC,MAAQ,iB,iBCA1BD,EAAOC,QAAU,CAAC,MAAQ,iB,y0yCCQpBiJ,GAAIC,OAAOC,IAEIC,G,yLACpBvC,OAAA,WACO,OACI,EAAC,KAAmBwC,SAApB,CAA6BpF,OAAO,GACpC,aACI,qDACA,EAAC,KAAD,CAAOrD,MAAO,uBACV,EAAC,KAAD,CAAOA,MAAO,YACV,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,gBACV,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,cACV,+EACqE,gBADrE,uCACiH,gBADjH,4CAKR,EAAC,KAAD,CAAOA,MAAO,yBACV,EAAC,KAAD,CAAOA,MAAO,sBACV,iCAGA,gBACM,sBADN,oDAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,SACV,kCAGA,iBACO,uBADP,8BAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,UACV,2BAGA,iBACO,2BADP,8BAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,gDACsC,2BADtC,MAIJ,EAAC,KAAD,CAAOrI,MAAO,OACV,+BAGA,iBACO,4BADP,wBAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,OACV,4CAGA,gBACM,2BADN,yBAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,MACV,wCAGA,gBACM,qBADN,yBAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,cACV,qCAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,gBACV,6CAGA,gBACM,yBADN,mCAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,6BACmB,EAAC,KAAD,UADnB,8BAC8D,EAAC,KAAD,UAD9D,MAIJ,EAAC,KAAD,CAAOrI,MAAO,sBACV,yCAGA,8BACoB,oBADpB,KAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,oBACV,4DAGA,iBACO,2BADP,oBAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,UAIZ,EAAC,KAAD,KACI,EAAC,KAAD,CAAOrI,MAAO,yBACV,uCAGA,kEACwD,uBADxD,0BAC8F,oCAD9F,KAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,oDAC0C,EAAC,KAAD,KAAQA,GAAR,OAD1C,8BAIJ,EAAC,KAAD,CAAOrI,MAAO,cAAM,EAAC,KAAD,KAAQqI,GAAR,OAAN,aACV,uCAGA,4FACkF,WAAG,EAAC,KAAD,KAAQA,GAAR,OAAH,YADlF,KAGA,YACI,kDACuC,EAAC,KAAD,KAAQA,GAAR,QAEvC,uFAC4E,EAAC,KAAD,KAAQA,GAAR,QAE5E,oGACyF,EAAC,KAAD,KAAQA,GAAR,SAG7F,0BACgB,EAAC,KAAD,KAAQA,GAAR,UAIxB,EAAC,KAAD,KACI,EAAC,KAAD,CAAOrI,MAAO,cACV,4EAGA,4CAGA,YACI,YAAI,qBAAJ,KACA,6CAAkC,uCAAlC,KACA,4CAAiC,oCAAjC,KACA,wDAA6C,0CAA7C,MAEJ,4BACkB,EAAC,KAAD,KAAQqI,GAAR,OADlB,4BACkE,EAAC,KAAD,KAAQA,GAAR,OADlE,KAC2F,EAAC,KAAD,KAAQA,GAAR,OAD3F,KACoH,EAAC,KAAD,KAAQA,GAAR,OADpH,YACoJ,EAAC,KAAD,KAAQA,GAAR,OADpJ,KAGA,EAAC,KAAD,kJAKR,EAAC,KAAD,CAAOrI,MAAO,6BACV,EAAC,KAAD,CAAOA,MAAO,mCACV,iEAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,qCACV,kEAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,mCACV,4GAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,UAIZ,EAAC,KAAD,CAAOrI,MAAO,6BACV,EAAC,KAAD,CAAOA,MAAO,mCACV,0GAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,oCACV,sIAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,UACV,6JAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,EAAC,KAAD,+GAKR,EAAC,KAAD,CAAOrI,MAAO,uBACV,EAAC,KAAD,CAAOA,MAAO,cACV,8HAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,kCACV,mFACyE,uCADzE,0DAKR,EAAC,KAAD,CAAOA,MAAO,wBACV,EAAC,KAAD,CAAOA,MAAO,gBACV,sDAC4C,EAAC,KAAD,UAD5C,iDAC0G,wCAD1G,gBACuJ,EAAC,KAAD,UADvJ,WAGA,WACI,0BADJ,6CAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,gCACV,sDAC4C,EAAC,KAAD,UAD5C,iDAC0G,oCAD1G,gBACmJ,EAAC,KAAD,UADnJ,WAGA,WACI,0BADJ,6CAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,gBACV,sDAC4C,EAAC,KAAD,UAD5C,iDAC0G,wCAD1G,gBACuJ,EAAC,KAAD,UADvJ,WAGA,WACI,+BADJ,0CAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,gCACV,sDAC4C,EAAC,KAAD,UAD5C,iDAC0G,oCAD1G,gBACmJ,EAAC,KAAD,UADnJ,WAGA,WACI,+BADJ,0CAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,gBACV,uBACa,EAAC,KAAD,UADb,+DAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,UAIZ,EAAC,KAAD,CAAOrI,MAAO,4BACV,EAAC,KAAD,CAAOA,MAAO,uBACV,kCAGA,8CACoC,EAAC,KAAD,UADpC,gBACiE,kCADjE,IAC4F,EAAC,KAAD,UAD5F,KAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,EAAC,KAAD,qCACiC,sBADjC,2BAIJ,EAAC,KAAD,CAAOrI,MAAO,gCACV,sHAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,UAIZ,EAAC,KAAD,KACI,EAAC,KAAD,CAAOrI,MAAO,uBACV,uHAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,UAIZ,EAAC,KAAD,CAAOrI,MAAO,kBACV,EAAC,KAAD,CAAOA,MAAO,2BACV,wJAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,wCACV,2FACiF,qBADjF,KAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,oBACV,yBACe,+BADf,8IAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,EAAC,KAAD,6CAKR,EAAC,KAAD,CAAOrI,MAAO,uBACV,EAAC,KAAD,CAAOA,MAAO,2BACV,yDAGA,qJAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,2BACV,oGAGA,yEAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,yGAIJ,EAAC,KAAD,CAAOrI,MAAO,mCACV,4BACkB,EAAC,KAAD,UADlB,iBACgD,8CADhD,qFAGA,EAAC,KAAD,2IAKR,EAAC,KAAD,CAAOA,MAAO,uBACV,EAAC,KAAD,CAAOA,MAAO,uBACV,iHACuG,EAAC,KAAD,KAAQqI,GAAR,OADvG,MAIJ,EAAC,KAAD,CAAOrI,MAAO,UAAMA,MAAO,oCAAb,4BACV,oEAC0D,EAAC,KAAD,KAAQqI,GAAR,OAD1D,qGACqN,EAAC,KAAD,UADrN,KAGA,iGAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,EAAC,KAAD,qEAIJ,EAAC,KAAD,CAAOrI,MAAO,YACV,uCAGA,iBACO,wBADP,uCAC2D,uBAD3D,KAGA,yCAC+B,EAAC,KAAD,YAD/B,8BAC4E,EAAC,KAAD,UAD5E,yBACkH,EAAC,KAAD,uBADlH,OAKR,EAAC,KAAD,CAAOA,MAAO,WACV,EAAC,KAAD,CAAOA,MAAO,wBACV,iBACO,mCADP,IACmC,EAAC,KAAD,KAAQqI,GAAR,OADnC,+BACqG,uBADrG,IACqH,EAAC,KAAD,UADrH,gEAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAMR,EAAC,KAAD,CAAOrI,MAAO,oBACV,iBACO,+BADP,IAC+B,EAAC,KAAD,KAAQqI,GAAR,OAD/B,+BACiG,uBADjG,IACiH,EAAC,KAAD,UADjH,yDAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,2FACiF,yBADjF,uCAGA,EAAC,KAAD,mEAKR,EAAC,KAAD,CAAOrI,MAAO,4BACV,EAAC,KAAD,CAAOA,MAAO,eACV,8CACoC,uCADpC,IACoE,EAAC,KAAD,KAAQqI,GAAR,OADpE,4GAC4N,EAAC,KAAD,UAD5N,KAGA,0EACgE,EAAC,KAAD,KAAQA,GAAR,OADhE,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAOR,EAAC,KAAD,CAAOrI,MAAO,4BACV,YACI,wBAAa,iCAAb,wBAA+D,aAC/D,oBAAS,gBAAT,MAAoB,EAAC,KAAD,iBAApB,MAA6C,gBAA7C,MAAwD,EAAC,KAAD,iBAAxD,KAAoF,aACpF,iBAAM,iCAAN,KAAiC,EAAC,KAAD,KAAQqI,GAAR,UAGzC,EAAC,KAAD,CAAOrI,MAAO,4BACV,gHAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,UAIZ,EAAC,KAAD,CAAOrI,MAAO,yCACV,EAAC,KAAD,CAAOA,MAAO,gBACV,oGAIJ,EAAC,KAAD,CAAOA,MAAO,8BACV,sFAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,mBACV,+HACqH,OAAG0I,KAAM,+DAA+D,2BAD7L,qEAKR,EAAC,KAAD,CAAO1I,MAAO,0CACV,EAAC,KAAD,CAAOA,MAAO,SACV,kDACwC,uCADxC,SAC6E,8BAD7E,iBACiH,oBADjH,OACiI,2BADjI,MACuJ,qBADvJ,MAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,kDAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,kDAGA,WACI,EAAC,KAAD,KAAQA,GAAR,UAIZ,EAAC,KAAD,KACI,EAAC,KAAD,CAAOrI,MAAO,QACV,gCACsB,mCADtB,MACoD,+BADpD,MAC8E,sBAD9E,MAIJ,EAAC,KAAD,CAAOA,MAAO,YACV,iBACO,uBADP,IACuB,EAAC,KAAD,KAAQqI,GAAR,OADvB,cACgE,EAAC,KAAD,KAAQA,GAAR,OADhE,8BACmI,EAAC,KAAD,UADnI,sCAGA,WACI,EAAC,KAAD,KACKA,GADL,QAIJ,YAGA,wCAC8B,EAAC,KAAD,KAAQA,GAAR,OAD9B,YACkE,sBADlE,KAGA,wCAC8B,EAAC,KAAD,KAAQA,GAAR,OAD9B,WACkE,EAAC,KAAD,KAAQA,GAAR,OADlE,eAC0G,uBAD1G,KAGA,mCACyB,EAAC,KAAD,KAAQA,GAAR,OADzB,eACsE,WAAG,EAAC,KAAD,UAAH,qBADtE,MAIJ,EAAC,KAAD,CAAOrI,MAAO,YACV,yGAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,UAIZ,EAAC,KAAD,CAAOrI,MAAO,2BACV,EAAC,KAAD,CAAOA,MAAO,4BACV,yDAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,mCACyB,EAAC,KAAD,KAAQA,GAAR,OADzB,MACwD,EAAC,KAAD,KAAQA,GAAR,OADxD,qDAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,6BACV,mDAGA,wCAC8B,EAAC,KAAD,UAD9B,iFAC4H,EAAC,KAAD,KAAQqI,GAAR,OAD5H,qDAC0M,EAAC,KAAD,KAAQA,GAAR,OAD1M,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,uBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,EAAC,KAAD,wGAKR,EAAC,KAAD,CAAOrI,MAAO,kBACV,EAAC,KAAD,CAAOA,MAAO,WACV,iBACO,sBADP,IACsB,EAAC,KAAD,UADtB,wCAGA,WACI,EAAC,KAAD,KACKqI,GADL,QAQJ,EAAC,KAAD,2EAIJ,EAAC,KAAD,CAAOrI,MAAO,oCACV,iBACO,+CADP,OAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,gHACsG,mCADtG,KAGA,oBACU,qCADV,qCAIJ,EAAC,KAAD,CAAOrI,MAAO,2BACV,iBACO,sCADP,OAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,uGAC6F,mCAD7F,KAGA,oBACU,qCADV,sCAKR,EAAC,KAAD,CAAOrI,MAAO,kBACV,EAAC,KAAD,CAAOA,MAAO,+BACV,0FAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,sBACV,sDAC4C,EAAC,KAAD,iBAD5C,MACoE,EAAC,KAAD,mBADpE,MAIJ,EAAC,KAAD,CAAOA,MAAO,uBACV,6HAKR,EAAC,KAAD,CAAOA,MAAO,gBACV,EAAC,KAAD,CAAOA,MAAO,8BACV,8EAGA,YACI,oBAAS,EAAC,KAAD,UAAT,eAAmC,EAAC,KAAD,iBAAnC,KACA,oBAAS,EAAC,KAAD,UAAT,eAAqC,EAAC,KAAD,mBAArC,MAEJ,+BACqB,EAAC,KAAD,KAAQqI,GAAR,SAGzB,EAAC,KAAD,CAAOrI,MAAO,8BACV,6DAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,UAQZ,EAAC,KAAD,CAAOrI,MAAO,aACV,EAAC,KAAD,CAAOA,MAAO,2BACV,yEAC+D,EAAC,KAAD,UAD/D,sCAGA,+BACqB,EAAC,KAAD,KAAQqI,GAAR,OADrB,MAIJ,EAAC,KAAD,CAAOrI,MAAO,2BACV,4CAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,2BACV,iBACO,+CADP,uBAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,iBACO,oBADP,wBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,iBACO,uBADP,wBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,UAIZ,EAAC,KAAD,CAAOrI,MAAO,cACV,EAAC,KAAD,CAAOA,MAAO,4BACV,qIAGA,+BACqB,EAAC,KAAD,eADrB,MAIJ,EAAC,KAAD,CAAOA,MAAO,4BACV,6CAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,4BACV,iBACO,+CADP,wBAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,iBACO,oBADP,wBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,iBACO,uBADP,wBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,uCACV,uHAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,EAAC,KAAD,wGAKR,EAAC,KAAD,CAAOrI,MAAO,sBACV,EAAC,KAAD,CAAOA,MAAO,oCACV,+HACqH,EAAC,KAAD,UADrH,oBAGA,+BACqB,EAAC,KAAD,KAAQqI,GAAR,OADrB,MAIJ,EAAC,KAAD,CAAOrI,MAAO,oCACV,qDAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,oCACV,WACI,iBACO,+CADP,gCAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,iBACO,oBADP,gCAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,iBACO,uBADP,gCAGA,WACI,EAAC,KAAD,KAAQA,GAAR,WAKhB,EAAC,KAAD,CAAOrI,MAAO,uBACV,EAAC,KAAD,CAAOA,MAAO,qCACV,0DACgD,EAAC,KAAD,UADhD,0DAGA,oCAC0B,EAAC,KAAD,KAAQqI,GAAR,OAD1B,MAIJ,EAAC,KAAD,CAAOrI,MAAO,qCACV,sDAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,qCACV,iBACO,+CADP,iCAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,iBACO,oBADP,iCAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,iBACO,uBADP,wBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,gDACV,gIAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,EAAC,KAAD,wGAKR,EAAC,KAAD,CAAOrI,MAAO,+BACV,EAAC,KAAD,CAAOA,MAAO,6CACV,4HACkH,EAAC,KAAD,UADlH,oBAGA,oCAC0B,EAAC,KAAD,KAAQqI,GAAR,OAD1B,MAIJ,EAAC,KAAD,CAAOrI,MAAO,6CACV,8DAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,6CACV,WACI,iBACO,+CADP,yCAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,iBACO,oBADP,yCAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,iBACO,uBADP,yCAGA,WACI,EAAC,KAAD,KAAQA,GAAR,WAKhB,EAAC,KAAD,CAAOrI,MAAO,kBACV,EAAC,KAAD,CAAOA,MAAO,gCACV,yEAC+D,EAAC,KAAD,UAD/D,oBACgG,EAAC,KAAD,YADhG,gEAC+K,EAAC,KAAD,UAD/K,eAGA,+BACqB,EAAC,KAAD,qBADrB,MAIJ,EAAC,KAAD,CAAOA,MAAO,gCACV,iDAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,gCACV,WACI,iBACO,+CADP,yCAGA,iBACO,oBADP,4BAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,iBACO,uBADP,4BAGA,WACI,EAAC,KAAD,KAAQA,GAAR,WAKhB,EAAC,KAAD,CAAOrI,MAAO,eACV,EAAC,KAAD,CAAOA,MAAO,6BACV,sFAGA,YACI,0BAAe,EAAC,KAAD,KAAQqI,GAAR,QACf,oDAAyC,EAAC,KAAD,KAAQA,GAAR,QACzC,qDAA0C,EAAC,KAAD,KAAQA,GAAR,QAC1C,kCAAuB,EAAC,KAAD,KAAQA,GAAR,SAE3B,+BACqB,EAAC,KAAD,KAAQA,GAAR,SAGzB,EAAC,KAAD,CAAOrI,MAAO,6BACV,8CAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,6BACV,WACI,iBACO,+CADP,yBAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,iBACO,oBADP,yBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,iBACO,uBADP,yBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,wDAGA,QAAIM,MAAO,GACP,YAAI,EAAC,KAAD,KAAQN,GAAR,YAKpB,EAAC,KAAD,CAAOrI,MAAO,mBACV,EAAC,KAAD,CAAOA,MAAO,qBACV,iCACuB,qBADvB,6CAGA,YACI,qCACA,+BAAoB,EAAC,KAAD,KAAQqI,GAAR,OAApB,cACA,kEAGR,EAAC,KAAD,CAAOrI,MAAO,uBACV,sCAC4B,EAAC,KAAD,YAD5B,wEACmH,EAAC,KAAD,KAAQqI,GAAR,OADnH,wCACmL,EAAC,KAAD,UADnL,KAGA,mDACyC,EAAC,KAAD,KAAQA,GAAR,OADzC,KACoF,EAAC,KAAD,KAAQA,GAAR,QAEpF,EAAC,KAAD,wJAKR,EAAC,KAAD,CAAOrI,MAAO,gBACV,EAAC,KAAD,CAAOA,MAAO,8BACV,qIAC2H,EAAC,KAAD,KAAQqI,GAAR,OAD3H,KAGA,+BACqB,EAAC,KAAD,KAAQA,GAAR,OADrB,MAIJ,EAAC,KAAD,CAAOrI,MAAO,6BACV,qCAC2B,sBAD3B,KAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAKJ,qCAC2B,uCAD3B,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAMR,EAAC,KAAD,CAAOrI,MAAO,6BACV,iBACO,+CADP,yBAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,iBACO,oBADP,yBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,iBACO,uBADP,yBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,yCACV,wHAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,EAAC,KAAD,wGAKR,EAAC,KAAD,CAAOrI,MAAO,eACV,EAAC,KAAD,CAAOA,MAAO,uBACV,kFACwE,EAAC,KAAD,UADxE,wDAC6I,EAAC,KAAD,KAAQqI,GAAR,OAD7I,KAGA,+BACqB,EAAC,KAAD,KAAQA,GAAR,OADrB,MAIJ,EAAC,KAAD,CAAOrI,MAAO,6BACV,8CAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAMR,EAAC,KAAD,CAAOrI,MAAO,6BACV,WACI,iBACO,+CADP,yBAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,iBACO,oBADP,yBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,iBACO,uBADP,yBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,WAKhB,EAAC,KAAD,CAAOrI,MAAO,YACV,EAAC,KAAD,CAAOA,MAAO,0BACV,yFAC+E,EAAC,KAAD,KAAQqI,GAAR,OAD/E,2BAGA,+BACqB,EAAC,KAAD,KAAQA,GAAR,QAErB,qDAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,wCACV,gDACsC,sBADtC,KAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAKJ,gDACsC,uCADtC,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAOR,EAAC,KAAD,CAAOrI,MAAO,wCACV,WACI,iBACO,+CADP,oCAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,iBACO,oBADP,oCAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,iBACO,uBADP,oCAGA,WACI,EAAC,KAAD,KAAQA,GAAR,WAKhB,EAAC,KAAD,CAAOrI,MAAO,uBACV,EAAC,KAAD,CAAOA,MAAO,yBACV,uEAGA,+BACqB,EAAC,KAAD,KAAQqI,GAAR,OADrB,KAGA,EAAC,KAAD,KACI,EAAC,KAAD,aADJ,MACyB,EAAC,KAAD,kBADzB,sEAIJ,EAAC,KAAD,CAAOrI,MAAO,uCACV,wDAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,uCACV,WACI,iBACO,+CADP,mCAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,iBACO,oBADP,mCAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,iBACO,uBADP,mCAGA,WACI,EAAC,KAAD,KAAQA,GAAR,WAKhB,EAAC,KAAD,KACI,EAAC,KAAD,CAAOrI,MAAO,gCACV,mFAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,oBACV,gDACsC,EAAC,KAAD,UADtC,OAGA,WACI,EAAC,KAAD,2BAEJ,sDAC4C,EAAC,KAAD,KAAQqI,GAAR,OAD5C,YAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,oBACV,6BACmB,EAAC,KAAD,KAAQqI,GAAR,OADnB,iGAGA,WACI,EAAC,KAAD,KAAQA,GAAR,UAIZ,EAAC,KAAD,KACI,EAAC,KAAD,CAAOrI,MAAO,mBACV,gGAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,mBACV,0DAGA,0DAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,2FAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,gBACV,wEAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,UAIZ,EAAC,KAAD,CAAOrI,MAAO,4BACV,EAAC,KAAD,CAAOA,MAAO,8BACV,2GACiG,EAAC,KAAD,UADjG,eAC6H,EAAC,KAAD,UAD7H,sBAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,2BACV,wFAC8E,EAAC,KAAD,UAD9E,eAC0G,EAAC,KAAD,mBAD1G,oDAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,uBACV,2EACiE,EAAC,KAAD,UADjE,aAC2F,EAAC,KAAD,UAD3F,iDAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,uBACV,iDACuC,EAAC,KAAD,UADvC,mBACuE,EAAC,KAAD,UADvE,8BACkH,EAAC,KAAD,UADlH,2DACyL,EAAC,KAAD,KAAQqI,GAAR,OADzL,KAGA,YACI,YAAI,EAAC,KAAD,KAAQA,GAAR,QACJ,YAAI,EAAC,KAAD,KAAQA,GAAR,QACJ,YAAI,EAAC,KAAD,KAAQA,GAAR,QACJ,YAAI,EAAC,KAAD,KAAQA,GAAR,WAIhB,EAAC,KAAD,CAAOrI,MAAO,oBACV,EAAC,KAAD,CAAOA,MAAO,qBACV,yBACe,8CADf,KAGA,4CACkC,EAAC,KAAD,KAAQqI,GAAR,OADlC,WAC4E,EAAC,KAAD,KAAQA,GAAR,OAD5E,MAIJ,EAAC,KAAD,CAAOrI,MAAO,4BACV,yHAGA,sHAC4G,iDAD5G,KAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,qHAC2G,iDAD3G,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,oBACV,iCACuB,uBADvB,2EAGA,sHAC4G,gCAD5G,KAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,qHAC2G,gCAD3G,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,UAIZ,EAAC,KAAD,CAAOrI,MAAO,2BACV,EAAC,KAAD,CAAOA,MAAO,0CACV,+FACqF,EAAC,KAAD,YADrF,KAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,8BACV,oEAC0D,EAAC,KAAD,gBAD1D,gDAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,EAAC,KAAD,2CACuC,EAAC,KAAD,mBADvC,KAGA,sEAGA,WACI,EAAC,KAAD,KAAQA,GAAR,UAIZ,EAAC,KAAD,KACI,EAAC,KAAD,CAAOrI,MAAO,cACV,iBACO,wBADP,2DAGA,uFAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,oCAGA,YACI,sBAAW,2BAAX,SAAoC,EAAC,KAAD,KAAQA,GAAR,QACpC,kBAAO,0BAAP,KAA2B,EAAC,KAAD,KAAQA,GAAR,QAC3B,kBAAO,6BAAP,KAA8B,EAAC,KAAD,KAAQA,GAAR,QAC9B,kBAAO,sBAAP,KAAuB,EAAC,KAAD,KAAQA,GAAR,QACvB,kBAAO,2BAAP,KAA4B,EAAC,KAAD,KAAQA,GAAR,UAGpC,EAAC,KAAD,CAAOrI,MAAO,yBACV,iCACuB,oCADvB,QAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,+DAIJ,EAAC,KAAD,CAAOrI,MAAO,yBACV,0BACgB,EAAC,KAAD,KAAQqI,GAAR,OADhB,8EAC+H,EAAC,KAAD,KAAQA,GAAR,OAD/H,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QASJ,sFAC4E,EAAC,KAAD,gBAD5E,MAIJ,EAAC,KAAD,CAAOrI,MAAO,gCACV,gFAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,6CAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,6FAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,2CACV,gEAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,EAAC,KAAD,8DAGA,yCAC+B,EAAC,KAAD,YAD/B,SACuD,2BADvD,KAC4E,EAAC,KAAD,KAAQA,GAAR,OAD5E,cAGA,WACI,EAAC,KAAD,KAAQA,GAAR,UAIZ,EAAC,KAAD,CAAOrI,MAAO,YACV,EAAC,KAAD,CAAOA,MAAO,oBACV,kBACQ,oBADR,iFACkG,EAAC,KAAD,UADlG,uBACsI,2BADtI,cAGA,EAAC,KAAD,kIAC8H,4BAD9H,sBAIJ,EAAC,KAAD,CAAOA,MAAO,uBACV,0DACgD,EAAC,KAAD,UADhD,+CAC4G,EAAC,KAAD,UAD5G,KAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,0DACgD,gCADhD,IACyE,EAAC,KAAD,KAAQA,GAAR,OADzE,MAIJ,EAAC,KAAD,CAAOrI,MAAO,wBACV,6FAGA,wCAC8B,EAAC,KAAD,KAAQqI,GAAR,OAD9B,UAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,0BAGA,WACI,EAAC,KAAD,KAAQA,GAAR,UAIZ,EAAC,KAAD,CAAOrI,MAAO,iBACV,EAAC,KAAD,CAAOA,MAAO,qBACV,kFAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,EAAC,KAAD,+FAIJ,EAAC,KAAD,CAAOrI,MAAO,wBACV,qFAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,EAAC,KAAD,mFAIJ,EAAC,KAAD,CAAOrI,MAAO,0BACV,qFAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,EAAC,KAAD,oFAKR,EAAC,KAAD,CAAOrI,MAAO,8CACV,EAAC,KAAD,CAAOA,MAAO,8CACV,gCACsB,EAAC,KAAD,UADtB,kCACqE,EAAC,KAAD,KAAQqI,GAAR,OADrE,SAIJ,EAAC,KAAD,CAAOrI,MAAO,yCACV,iFAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,4CACV,qDAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAEJ,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,gBACV,8FAKR,EAAC,KAAD,CAAOA,MAAO,+CACV,EAAC,KAAD,CAAOA,MAAO,gCACV,uDAC6C,EAAC,KAAD,YAD7C,uBACmF,8CADnF,sBAC4I,EAAC,KAAD,UAD5I,iBAC0K,wCAD1K,KAGA,WACI,EAAC,KAAD,yFAGR,EAAC,KAAD,CAAOA,MAAO,8BACV,uDAC6C,EAAC,KAAD,YAD7C,uBACmF,iCADnF,sBAC+H,EAAC,KAAD,UAD/H,iBAC6J,sCAD7J,KAGA,WACI,EAAC,KAAD,2HAGR,EAAC,KAAD,CAAOA,MAAO,2BACV,uDAC6C,EAAC,KAAD,YAD7C,uBACmF,oCADnF,sBACkI,EAAC,KAAD,UADlI,iBACgK,wCADhK,KAGA,WACI,EAAC,KAAD,yIAGR,EAAC,KAAD,CAAOA,MAAO,mCACV,uDAC6C,EAAC,KAAD,YAD7C,uBACmF,gDADnF,wCACgK,EAAC,KAAD,UADhK,IACiL,yBADjL,iBACgN,2CADhN,KAGA,WACI,EAAC,KAAD,yFAGR,EAAC,KAAD,CAAOA,MAAO,+BACV,WACI,EAAC,KAAD,kSAOJ,sBAGA,WACI,EAAC,KAAD,8EAIZ,EAAC,KAAD,CAAOA,MAAO,mBACV,EAAC,KAAD,CAAOA,MAAO,kCACV,qDAC2C,EAAC,KAAD,KAAQqI,GAAR,OAD3C,IAC8E,sCAD9E,iCAC0I,EAAC,KAAD,KAAQA,GAAR,OAD1I,qBAGA,WACI,EAAC,KAAD,4CAEJ,sBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOrI,MAAO,iCACV,qDAC2C,EAAC,KAAD,KAAQqI,GAAR,MAD3C,IAC8E,wCAD9E,iCAC4I,EAAC,KAAD,KAAQA,GAAR,MAD5I,qBAGA,WACI,EAAC,KAAD,6CAEJ,sBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,OAEJ,EAAC,KAAD,kFAKR,EAAC,KAAD,CAAOrI,MAAO,aACV,EAAC,KAAD,CAAOA,MAAO,+BACV,qDAC2C,EAAC,KAAD,KAAQqI,GAAR,MAD3C,IAC8E,wCAD9E,MACiH,EAAC,KAAD,KAAQA,GAAR,MADjH,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,OAEJ,sBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAIZ,EAAC,KAAD,CAAOrI,MAAO,wBACV,EAAC,KAAD,CAAOA,MAAO,uBACV,8BACoB,2BADpB,2CAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAGR,EAAC,KAAD,CAAOrI,MAAO,gCACV,8BACoB,0BADpB,2CAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAGR,EAAC,KAAD,CAAOrI,MAAO,yBACV,oCAC0B,0BAD1B,2CAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAGR,EAAC,KAAD,CAAOrI,MAAO,mBACV,8BACoB,2BADpB,2CAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAGR,EAAC,KAAD,CAAOrI,MAAO,eACV,iBACO,EAAC,KAAD,UADP,sBAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAIZ,EAAC,KAAD,CAAOrI,MAAO,uBACV,EAAC,KAAD,CAAOA,MAAO,yBACV,qEAC2D,EAAC,KAAD,gBAD3D,MAIJ,EAAC,KAAD,CAAOA,MAAO,cACV,+DAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,OAEJ,EAAC,KAAD,gGAC4F,EAAC,KAAD,KAAQA,GAAR,MAD5F,OAKR,EAAC,KAAD,CAAOrI,MAAO,aACV,EAAC,KAAD,CAAOA,MAAO,aACV,6BACmB,EAAC,KAAD,YADnB,gBACkD,EAAC,KAAD,UADlD,kFAIJ,EAAC,KAAD,CAAOA,MAAO,YACV,8BACoB,uBADpB,yEAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAGR,EAAC,KAAD,CAAOrI,MAAO,4BACV,8BACoB,uCADpB,qGAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAGR,EAAC,KAAD,CAAOrI,MAAO,mCACV,8BACoB,8CADpB,QAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAGR,EAAC,KAAD,CAAOrI,MAAO,8BACV,8BACoB,yCADpB,QAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAGR,EAAC,KAAD,CAAOrI,MAAO,2BACV,8BACoB,sCADpB,QAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAIZ,EAAC,KAAD,CAAOrI,MAAO,sBACV,EAAC,KAAD,CAAOA,MAAO,sBACV,8BACoB,iCADpB,kDAC4F,EAAC,KAAD,UAD5F,KAGA,8BACoB,EAAC,KAAD,KAAQqI,GAAR,MADpB,gEAC2G,EAAC,KAAD,UAD3G,MAC8H,EAAC,KAAD,gBAD9H,KACqJ,EAAC,KAAD,KAAQA,GAAR,OAErJ,yBAGA,YACI,YAAI,EAAC,KAAD,KAAQA,GAAR,OACJ,YAAI,EAAC,KAAD,KAAQA,GAAR,QAER,sBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,OAEJ,iBACO,EAAC,KAAD,KAAQA,GAAR,MADP,oCACkE,EAAC,KAAD,KAAQA,GAAR,MADlE,2CACkI,EAAC,KAAD,KAAQA,GAAR,MADlI,KAC6J,EAAC,KAAD,KAAQA,GAAR,MAD7J,KACwL,EAAC,KAAD,KAAQA,GAAR,MADxL,SAKR,EAAC,KAAD,CAAOrI,MAAO,wCACV,EAAC,KAAD,CAAOA,MAAO,wCACV,8BACoB,mDADpB,kDAC8G,EAAC,KAAD,UAD9G,KAGA,8BACoB,EAAC,KAAD,KAAQqI,GAAR,MADpB,gEAC2G,EAAC,KAAD,UAD3G,MAC8H,EAAC,KAAD,gBAD9H,KACqJ,EAAC,KAAD,KAAQA,GAAR,OAErJ,uDAC6C,EAAC,KAAD,KAAQA,GAAR,MAD7C,yCACyH,EAAC,KAAD,KAAQA,GAAR,MADzH,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,OAEJ,4DACkD,uCADlD,KACmF,yCADnF,MACuH,sCADvH,MAIJ,EAAC,KAAD,CAAOrI,MAAO,wDACV,wFAGA,YACI,oBAAS,uCAAT,KACA,oBAAS,yCAAT,KACA,oBAAS,sCAAT,KACA,oBAAS,yBAAT,KAA4B,EAAC,KAAD,KAAQqI,GAAR,UAIxC,EAAC,KAAD,CAAOrI,MAAO,wBACV,EAAC,KAAD,CAAOA,MAAO,6BACV,4FAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAGR,EAAC,KAAD,CAAOrI,MAAO,4BACV,4FAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAGR,EAAC,KAAD,CAAOrI,MAAO,6BACV,4FAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,QAGR,EAAC,KAAD,CAAOrI,MAAO,wBACV,2DAGA,YACI,YAAI,EAAC,KAAD,KAAQqI,GAAR,OAAyD,aAC7D,YAAI,EAAC,KAAD,KAAQA,GAAR,UAIhB,EAAC,KAAD,CAAOrI,MAAO,4BACV,EAAC,KAAD,CAAOA,MAAO,cACV,yDAGA,wCAC8B,EAAC,KAAD,gBAD9B,mFAGA,yDAC+C,EAAC,KAAD,KAAQqI,GAAR,MAD/C,mBAC8F,EAAC,KAAD,eAD9F,cAGA,WACI,EAAC,KAAD,KAAQA,GAAR,OAEJ,+BACqB,wBADrB,2EAKR,EAAC,KAAD,CAAOrI,MAAO,yCACV,EAAC,KAAD,CAAOA,MAAO,iBACV,8HACoH,EAAC,KAAD,gBADpH,yBAGA,YACI,oCAAyB,EAAC,KAAD,KAAQqI,GAAR,OACzB,iDAAsC,EAAC,KAAD,KAAQA,GAAR,OACtC,+CAAoC,EAAC,KAAD,KAAQA,GAAR,SAG5C,EAAC,KAAD,CAAOrI,MAAO,sBACV,kIACwH,EAAC,KAAD,gBADxH,yBAGA,YACI,oCAAyB,EAAC,KAAD,KAAQqI,GAAR,OACzB,iDAAsC,EAAC,KAAD,KAAQA,GAAR,OACtC,+CAAoC,EAAC,KAAD,KAAQA,GAAR,QAExC,WACI,EAAC,KAAD,KAAQA,GAAR,MADJ,8DACgG,EAAC,KAAD,UADhG,OAKR,EAAC,KAAD,CAAOrI,MAAO,qDACV,EAAC,KAAD,CAAOA,MAAO,yBACV,yHAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,SAIZ,EAAC,KAAD,CAAOrI,MAAO,oDACV,EAAC,KAAD,CAAOA,MAAO,gCACV,iHAGA,WACI,EAAC,KAAD,KAAQqI,GAAR,Y,GA77DYjC,e,0DCXxC,gBAEewC,6BAAc","file":"route-statistica.chunk.49197.js","sourcesContent":["// extracted by mini-css-extract-plugin\nmodule.exports = {\"example\":\"example__2PzAa\"};","// extracted by mini-css-extract-plugin\nmodule.exports = {\"plus\":\"plus__2u13i\"};","// extracted by mini-css-extract-plugin\nmodule.exports = {\"box\":\"box__3cKyY\",\"default\":\"default__v-emJ\",\"red\":\"red__339Cz\",\"orange\":\"orange__24_8v\",\"yellow\":\"yellow__1Jo9W\",\"lime\":\"lime__34yV5\",\"cyan\":\"cyan__3RqLr\",\"blue\":\"blue__13Wnj\",\"magenta\":\"magenta__2tkzq\"};","import style from './Latex.css';\nimport {useContext} from \"preact/hooks\";\nimport LatexRenderColor from \"../contexts/LatexRenderColor\";\nimport LatexDefaultInline from \"../contexts/LatexDefaultInline\";\n\nexport default function(props) {\n\t// black, blue, brown, cyan, darkgray, gray, green, lightgray, lime, magenta, olive, orange, pink, purple, red, teal, violet, white, yellow\n\tlet renderColor = useContext(LatexRenderColor);\n\tlet defaultInline = useContext(LatexDefaultInline);\n\n\tlet is_inline;\n\tif(props.inline === undefined) {\n\t\tis_inline = defaultInline;\n\t}\n\telse {\n\t\tis_inline = props.inline;\n\t}\n\n\tlet inline = is_inline ? `\\\\inline` : \"\";\n\tlet equation = `${inline} {\\\\color{${renderColor}} ${props.children} }`;\n\n\treturn (\n\t\t\n\t);\n}\n","// extracted by mini-css-extract-plugin\nmodule.exports = {\"title\":\"title__3ZVpg\",\"contents\":\"contents__20_NI\"};","import style from \"./Example.less\";\r\nimport {Component} from \"preact\";\r\n\r\nexport default function(props) {\r\n return (\r\n
\n
\n
\n Il prezzo che un individuo coerente riterrebbe equo per ricevere 1 nel caso l'evento si verificasse e 0 nel caso l'evento non si verificasse.\n
\n\n \"omegone\"\n\n
\n L'insieme di tutti gli esiti possibili di un esperimento.\n
\n\n
\n \"omeghino\"\n\n
\n Un elemento dello spazio campionario.\n
\n\n
\n \"e\"\n\n
\n Un sottoinsieme dello spazio campionario.\n
\n\n
\n Lo spazio campionario stesso è un evento certo.\n
\n\n \"not e\"\n\n
\n Il complementare di un sottoinsieme.\n
\n\n
\n \"e intersecato effe\"\n\n
\n L'intersezione di più sottoinsiemi.\n
\n\n
\n \"e unito a effe\"\n\n
\n L'unione di più sottoinsiemi.\n
\n\n
\n \"e meno effe\"\n\n
\n
\n \"e contenuto in effe\"\n\n
\n L'inclusione del primo insieme in un altro.\n
\n\n
\n Se si verifica
\n \"e è impossibile\"\n\n
\n Un sottoinsieme vuoto.\n
\n\n
\n \"e ed effe si escludono mutualmente\"\n\n
\n La disgiunzione di due insiemi.\n
\n\n
\n \"famiglia effe\"\n\n
\n I sottoinsiemi dello spazio campionario formano una famiglia di sottoinsiemi detta famiglia degli eventi.\n
\n\n
\n Qualsiasi sottoinsieme appartenente a
\n \"sigma algebra\"\n\n
\n Se la famiglia degli eventi soddisfa questi tre requisiti, allora viene detta
\n Un esempio:
\n \"la partizione e composta da e uno, e due, e tre...\"\n\n
\n Un insieme di esiti e eventi:\n
\n\n La partizione
\n La probabilità di un evento è un numero tra 0 e 1.\n
\n\n
\n La probabilità dello spazio campionario è sempre 1.\n
\n\n
\n La probabilità dell'unione di eventi indipendenti è uguale alla somma delle loro probabilità.\n
\n\n
\n La probabilità di un evento negato è uguale a 1 meno la probabilità dell'evento non negato.\n
\n\n
\n La probabilità di un evento incluso in un altro è sempre minore o uguale alla probabilità dell'evento in cui è incluso.\n
\n\n
\n La probabilità di un evento unito a un altro è uguale alla somma delle probabilità dei due eventi meno la probabilità della loro intersezione.\n
\n\n
\n Spazi campionari in cui ci sono un numero finito di esiti e ogni esito ha la stessa probabilità di verificarsi.\n
\n\n
\n Gli spazi campionari possono avere un numero infinito di esiti: sono equiprobabili geometrici se nessun esito è privilegiato rispetto agli altri.\n
\n\n Estraggo un numero, da un sacchetto con
\n Tengo conto dell'ordine in cui ho estratto i numeri.\n
\n\n
\n Estraggo un numero, da un sacchetto con
\n Tengo conto dell'ordine in cui ho estratto i numeri.\n
\n\n
\n Estraggo un numero, da un sacchetto con
\n Non mi interessa l'ordine in cui ho estratto i numeri.\n
\n\n
\n Estraggo un numero, da un sacchetto con
\n Non mi interessa l'ordine in cui ho estratto i numeri.\n
\n\n
\n Estraggo
\n
\n \"E dato F\"\n\n
\n La probabilità che si verifichi
\n
bash
, però al contrario...\n \n Se due eventi sono mutualmente esclusivi, entrambe le loro probabilità condizionate saranno uguali a 0.\n
\n\n
\n Si può sfruttare la formula inversa della probabilità condizionata per calcolare catene di intersezioni:\n
\n\n
\n La probabilità che si verifichi un evento è pari alla somma delle probabilità dell'evento stesso dati tutti gli eventi di una partizione.\n
\n\n
\n La legge delle alternative funziona anche quando ad essere partizionato è un evento:\n
\n\n
\n Tramite la formula di Bayes possiamo risalire alla probabilità di un evento condizionato a un altro partendo dalla probabilità di quest'ultimo condizionato al primo:\n
\n\n
\n \"eventi indipendenti a due a due\"\n\n
\n Se due eventi sono indipendenti, sapere che uno dei due si è verificato non influisce sulle probabilità che si sia verificato l'altro.\n
\n\n
\n \"eventi indipendenti a tre a tre, a quattro a quattro, a cinque a cinque...\"\n\n
\n Si può verificare l'indipendenza di più eventi alla volta:\n
\n\n
\n Eventi indipendenti a due a due non sono per forza indipendenti a tre a tre, e viceversa.\n
\n\n Un insieme di
\n Una funzione che fa corrispondere un numero reale a ogni possibile esito dello spazio campionario.
\n Ad ogni variabile aleatoria sono associati gli eventi
\n Per definizione, tutte le variabili aleatorie devono rispettare questa condizione:\n
\n\n
\n \"supporto di X\"\n\n
\n Il codominio della variabile aleatoria è il suo supporto.\n
\n\n Per indicare che un valore
\n La funzione probabilità
\n
\n La funzione densità
\n
\n A differenza della funzione probabilità, è possibile che la funzione densità non esista per una certa variabile aleatoria.\n
\n\n Ogni variabile aleatoria ha una funzione di ripartizione
\n Si può dire che essa rappresenti la probabilità dell'evento
\n
\n Possiamo usare la funzione di ripartizione per calcolare la probabilità di un certo valore reale:\n
\n\n
\n Nel discreto basta abbinare un nuovo valore a ogni valore della variabile originale.\n
\n\n Nel continuo applichiamo la formula dell'integrazione per sostituzione:\n
\n\n
\n Trasformare variabili aleatorie è molto utile nell'informatica per creare distribuzioni partendo da una funzione random()
che restituisce numeri da 0 a 1 con una distribuzione lineare.\n
\n Ogni variabile aleatoria che ha una funzione di ripartizione e un supporto finito ha anche una media (o valore medio o atteso):\n
\n\n
\n Nel discreto, si può calcolare con:\n
\n\n
\n Nel continuo, si può calcolare con:\n
\n\n
\n Valore per cui la funzione probabilità o funzione densità è massima.\n
\n\n Il quantile
\n
\n\n
\n\n Il quantile di ordine 0.5
\n I quantili di ordine 0.25
\n I quantili di ordine
\n È un valore che indica quanto la variabile aleatoria si discosta generalmente dalla media:\n
\n\n
\n Data una variabile aleatoria non-negativa:\n
\n\n
\n Divide in due parti (
\n
\n \"disuguaglianza di cebicev\"\n\n
\n Se la variabile aleatoria
\n
\n E anche:\n
\n\n
\n Il momento
\n
\n La funzione generatrice dei momenti è:\n
\n\n
\n Se due variabile aleatorie hanno la stessa funzione generatrice dei momenti, allora esse hanno la stessa distribuzione.\n
\n\n E' la trasformata di Laplace della variabile aleatoria di X.\n
\n\n La funzione caratteristica è:\n
\n\n
\n Se due variabile aleatorie hanno la stessa funzione caratteristica, allora esse hanno la stessa distribuzione.\n
\n\n E' la trasformata di Fourier della variabile aleatoria di X.\n
\n\n Per dire che una variabile ha una certa distribuzione, si usa la notazione:\n
\n\n
\n Una prova con solo due possibili esiti:
\n Una sequenza di prove di Bernoulli per le quali le probabilità di successo e fallimento rimangono invariate.\n
\n\n Una variabile aleatoria che rappresenta una prova di Bernoulli:\n
\n\n Il suo simbolo è
\n La distribuzione bernoulliana ha come densità:\n
\n\n
\n Una variabile aleatoria che conta il numero di successi di
\n Il suo simbolo è
\n La binomiale ha come densità:\n
\n\n
\n La funzione generatrice dei momenti della binomiale è:\n
\n\n
\n La media di una binomiale è:\n
\n\n
\n La varianza di una binomiale è:\n
\n\n
\n Una variabile aleatoria che conta il numero di prove in uno schema di Bernoulli fino alla comparsa del primo successo.\n
\n\n Il suo simbolo è
\n La geometrica ha come densità:\n
\n\n
\n La funzione generatrice dei momenti della geometrica è:\n
\n\n
\n La media della geometrica è:\n
\n\n
\n La varianza della geometrica è:\n
\n\n
\n La geometrica non tiene conto degli eventi avvenuti in passato: ha la proprietà dell'assenza di memoria:\n
\n\n
\n Una variabile aleatoria che conta il numero di prove in uno schema di Bernoulli necessarie perchè si verifichi l'
\n Il suo simbolo è
\n La binomiale negativa ha come densità:\n
\n\n
\n
\n La funzione generatrice dei momenti della binomiale negativa è:\n
\n\n
\n La media della binomiale negativa è:\n
\n\n
\n La varianza della binomiale negativa è:\n
\n\n
\n Una variabile aleatoria che conta il numero
\n Il suo simbolo rimane
\n La geometrica traslata ha come densità:\n
\n\n
\n La funzione generatrice dei momenti della geometrica traslata è:\n
\n\n
\n La media della geometrica traslata è:\n
\n\n
\n La varianza della geometrica è:\n
\n\n
\n La geometrica traslata non tiene conto degli eventi avvenuti in passato: ha la proprietà dell'assenza di memoria:\n
\n\n
\n Una variabile aleatoria che conta il numero di insuccessi in uno schema di Bernoulli prima che si verifichi l'
\n Il suo simbolo rimane
\n La binomiale negativa traslata ha come densità:\n
\n\n
\n
\n La funzione generatrice dei momenti della binomiale negativa traslata è:\n
\n\n
\n La media della binomiale negativa traslata è:\n
\n\n
\n La varianza della binomiale negativa traslata è:\n
\n\n
\n Una variabile aleatoria che, sapendo il numero di successi
\n Il suo simbolo è
\n La ipergeometrica ha come densità:\n
\n\n
\n
\n La funzione generatrice dei momenti della ipergeometrica è trascurabile.\n
\n\n La media della ipergeometrica è:\n
\n\n
\n La varianza della ipergeometrica è:\n
\n\n
\n Una variabile aleatoria che soddisfa tutte le seguenti caratteristiche:\n
\n\n Il suo simbolo è
\n La poissoniana ha come densità:\n
\n\n
\n
\n La funzione generatrice dei momenti della poissoniana è:\n
\n\n
\n La media della poissoniana è:\n
\n\n
\n La varianza della poissoniana è:\n
\n\n
\n Gli altri momenti della poissoniana sono:\n
\n\n Una successione di arrivi avvenuti in un certo arco temporale che:\n
\n\n Una variabile aleatoria
\n E' una distribuzione poissoniana con
\n Una variabile aleatoria che conta il tempo diwidehattesa prima del primo arrivo di un processo di Poisson di intensità
\n Il suo simbolo è
\n L'esponenziale ha come densità:\n
\n\n
\n L'esponenziale ha come funzione di ripartizione:\n
\n\n
\n La funzione generatrice dei momenti dell'esponenziale è:\n
\n\n
\n La media dell'esponenziale è:\n
\n\n
\n La varianza dell'esponenziale è:\n
\n\n
\n L'esponenziale non tiene conto degli eventi avvenuti in passato: ha la proprietà dell'assenza di memoria:\n
\n\n
\n Una variabile aleatoria che conta il tempo diwidehattesa prima dell'
\n Il suo simbolo è
\n La legge gamma ha come densità:\n
\n\n
\n
\n La funzione generatrice dei momenti della legge gamma è:\n
\n\n
\n La media della legge gamma è:\n
\n\n
\n La varianza della legge gamma è:\n
\n\n
\n Una variabile aleatoria che può assumere qualsiasi valore in un intervallo
\n Il suo simbolo è
\n Su di essa vale la seguente proprietà:\n
\n\n
\n La distribuzione uniforme ha come densità:\n
\n\n
\n La distribuzione uniforme ha come funzione di ripartizione:\n
\n\n
\n
\n La funzione generatrice dei momenti della distribuzione uniforme è:\n
\n\n
\n La media della distribuzione uniforme è:\n
\n\n
\n La varianza della distribuzione uniforme è:\n
\n\n
\n Una variabile aleatoria con una specifica distribuzione.\n
\n\n Il suo simbolo è
\n La distribuzione normale ha come densità:\n
\n\n
\n
\n La funzione generatrice dei momenti della distribuzione normale è:\n
\n\n
\n La media della distribuzione normale è:\n
\n\n
\n La varianza della distribuzione normale è:\n
\n\n
\n Qualsiasi normale può essere trasformata in qualsiasi altra normale:\n
\n\n
\n La distribuzione normale standard
\n
\n La sua funzione di ripartizione è detta
\n
\n Da un quantile
\n
\n La distribuzione normale ha una particolare relazione con la distribuzione Gamma:\n
\n\n
\n \"chi-quadro a un grado di libertà\"\n\n
\n Esiste una distribuzione Gamma particolare:\n
\n\n
\n Più chi-quadro possono essere sommate per aumentare i loro gradi di libertà:\n
\n\n
\n Un'altra funzione particolare è la funzione T di Student:\n
\n\n
\n La binomiale è come una ipergeometrica ma con ripetizioni, quindi per valori molto grandi di
\n
\n La binomiale non è altro che una poissoniana a tempo discreto, quindi, se
\n
\n Per il Teorema di De Moivre-Laplace, se una binomiale ha una
\n
\n Passando da una variabile discreta
\n Un vettore composto da variabili aleatorie.\n
\n\n Il suo simbolo generalmente è
\n I vettori aleatori hanno più funzioni di ripartizione che si differenziano in base al numero di parametri.\n
\n\n Se il numero di parametri coincide con la dimensione del vettore aleatorio, allora la funzione sarà una funzione di ripartizione congiunta:\n
\n\n
\n Se il numero di parametri è minore della dimensione del vettore aleatorio, allora la funzione sarà una funzione di ripartizione marginale:\n
\n\n
\n I vettori aleatori discreti hanno più densità che si differenziano in base al numero di parametri.\n
\n\n Se il numero di parametri coincide con la dimensione del vettore aleatorio, allora la funzione sarà una densità congiunta:\n
\n\n
\n Se il numero di parametri è minore della dimensione del vettore aleatorio, allora la funzione sarà una densità marginale:\n
\n\n
\n Più variabili aleatorie sono indipendenti se, per qualsiasi scelta di intervalli
\n
\n E' possibile calcolare la media di qualsiasi funzione
\n
\n Le medie di più variabili aleatorie si possono sommare:\n
\n\n
\n Un operatore che misura la correlazione di due variabili aleatorie.\n
\n\n Si calcola con il valore atteso dei prodotti delle distanze dalla media:\n
\n\n
\n Ha diverse proprietà:\n
\n\n Due variabili sono variabili incorrelate se:\n
\n\n
\n Variabili indipendenti sono sempre incorrelate.\n
\n\n Una matrice
\n
\n E' sempre simmetrica e semidefinita positiva (tutti gli autovalori sono
\n Un valore che misura come due variabili aleatorie sono correlate:\n
\n\n
\n E' sempre compreso tra -1 e 1:\n
\n\n
\n Vale esattamente -1 o 1 solo se esiste un legame lineare tra le due variaibli:\n
\n\n
\n La varianza di due variabili aleatorie sommate è:\n
\n\n
\n Se più variabili aleatorie
\n
\n Una n-pla di variabili aleatorie con la stessa distribuzione della variabile aleatoria
\n Il valore dato dalla media aritmetica degli
\n
\n Il momento campionario di primo ordine è la media campionaria
\n La media aritmetica dello scarto quadratico medio degli elementi del campione.\n
\n\n Se è noto il valore medio
\n
\n Altrimenti:\n
\n\n
\n Se calcoliamo la media della media campionaria, risulterà vero che:\n
\n\n
\n Se calcoliamo la varianza della media campionaria, risulterà vero che:\n
\n\n
\n Se calcoliamo la media della varianza campionaria, risulterà vero che:\n
\n\n
\n Se la popolazione
\n ...allora sappiamo anche la distribuzione della media campionaria!\n
\n\n
\n ...e anche della varianza campionaria!\n
\n\n
\n
\n ...e che media campionaria e varianza campionaria sono indipendenti tra loro!\n
\n\n Se la successione di variabili aleatorie
\n
\n Se la successione di variabili aleatorie
\n
\n Se la successione di variabili aleatorie
\n
\n Se la successione di variabili aleatorie
\n
\n
\n In più:\n
\n\n
\n La successione delle medie campionarie
\n
\n Ovvero:\n
\n\n
\n
\n La successione delle medie campionarie
\n
\n Ovvero:\n
\n\n
\n La successione delle medie campionarie
\n
\n Ovvero:\n
\n\n
\n E' una somma di bernoulliane, e quindi si approssima a una normale:\n
\n\n
\n E' una somma di geometriche, e quindi si approssima a una normale:\n
\n\n
\n E' una somma di altre poissoniane, e quindi si approssima a una normale:\n
\n\n
\n E' una somma di esponenziali, e quindi si approssima a una normale:\n
\n\n
\n Se
\n
\n Per indicare parametri sconosciuti di una legge si usa
\n Una variabile aleatoria funzione di un campione:\n
\n\n
\n Una statistica
\n Uno stimatore è corretto se il suo valore atteso coincide con quello dei parametri che stima:\n
\n\n
\n Uno stimatore è asintoticamente corretto se, per infinite osservazioni, il suo valore atteso coincide con quello dei parametri che stima:\n
\n\n
\n Uno stimatore è consistente in media quadratica se:\n
\n\n
\n Uno stimatore è consistente in probabilità se:\n
\n\n
\n Uno stimatore è asintoticamente normale se:\n
\n\n
\n Si può usare il metodo dei momenti per ottenere uno stimatore di una popolazione
\n Lo stimatore di
\n Visto che:\n
\n\n Allora:\n
\n\n
\n Se
\n Si può usare il metodo della massima verosomiglianza per ottenere uno stimatore di una popolazione
\n Lo stimatore di
\n Consiste nel trovare il massimo assoluto
\n
\n Gli stimatori di massima verosomiglianza sono asintoticamente corretti, consistenti in probabilità e asintoticamente normali.\n
\n\n Gli stimatori di massima verosomiglianza godono delle seguenti proprietà:\n
\n\n Per il metodo dei momenti oppure per il metodo della massima verosomiglianza:\n
\n\n
\n Per il metodo dei momenti oppure per il metodo della massima verosomiglianza:\n
\n\n
\n Per il metodo dei momenti oppure per il metodo della massima verosomiglianza:\n
\n\n
\n Per il metodo della massima verosomiglianza:\n
\n\n \"intervallo di confidenza al 95%\"\n\n
\n L'intervallo di valori di
\n L'intervallo di confidenza a N della stima
\n
\n Può anche essere unilatero nel caso limiti la stima in una sola direzione, positiva o negativa.\n
\n\n Se conosciamo la varianza di una normale, allora possiamo ricavare velocemente gli intervalli di confidenza all'
\n Se non conosciamo la varianza di una normale, allora possiamo ricavare velocemente gli intervalli di confidenza all'
\n
\n L'intervallo di confidenza per la proprorzione di una bernoulliana qualsiasi si ottiene da questa formula:\n
\n\n
\n L'intervallo di confidenza per la media di una qualsiasi popolazione si ottiene da questa formula:\n
\n\n