{"version":3,"sources":["webpack:///./components/Example.less","webpack:///./components/MenuList.less","webpack:///./components/MenuList.js","webpack:///./components/Example.js","webpack:///./routes/CalcoloNumerico.js"],"names":["module","exports","props","class","style","menulist","children","example","r","String","raw","title","href","to"],"mappings":"4EACAA,EAAOC,QAAU,CAAC,IAAM,aAAa,OAAS,gBAAgB,OAAS,gBAAgB,KAAO,cAAc,KAAO,cAAc,KAAO,cAAc,QAAU,iBAAiB,QAAU,mB,mBCA3LD,EAAOC,QAAU,CAAC,SAAW,oB,mCCD7B,qCAEe,aAASC,GACpB,OACI,QAAIC,MAAOC,IAAMC,UACZH,EAAMI,a,2DCLnB,qCAEe,aAAUJ,GACrB,OACI,SAAKC,MAAOC,IAAMG,SACbL,EAAMI,a,umGCAbE,EAAIC,OAAOC,IAGF,qBACX,OACI,aACI,gCACA,EAAC,IAAD,CAASC,MAAO,SACZ,EAAC,IAAD,CAAOA,MAAO,YACV,YACI,YAAI,EAAC,IAAD,CAAMC,KAAM,sCAAZ,gCAGZ,EAAC,IAAD,CAAOD,MAAO,SACV,8BAGA,YACI,iDACA,kEAGR,EAAC,IAAD,CAAOA,MAAO,oBACV,YACI,YAAI,EAAC,IAAD,CAAOE,GAAI,sBACf,YAAI,EAAC,IAAD,CAAOA,GAAI,yBAI3B,EAAC,IAAD,CAASF,MAAO,gBACZ,EAAC,IAAD,CAAOA,MAAO,8BACV,kIAGA,EAAC,IAAD,KACI,YACI,OAAGC,KAAM,4CAAT,8BADJ,IACwF,kEAKpG,EAAC,IAAD,CAASD,MAAO,aACZ,EAAC,IAAD,CAAOA,MAAO,sBACV,+CAGA,YACI,8CACA,2FAIZ,EAAC,IAAD,CAASA,MAAO,8BACZ,EAAC,IAAD,CAAOA,MAAO,UACV,2EACiE,EAAC,IAAD,KAASH,EAAT,MADjE,yCAIA,mDACyC,EAAC,IAAD,KAASA,EAAT,MADzC,OAKR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,mBACV,kFAGA,EAAC,IAAD,KAASH,EAAT,OAEJ,EAAC,IAAD,CAAOG,MAAO,mBACV,sFAGA,EAAC,IAAD,KAASH,EAAT,QAGR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,eACV,yCAC+B,uCAD/B,yCAEY,sBAFZ,KAIA,EAAC,IAAD,KACI,4BACgB,aADhB,eAEgB,aAFhB,eAGgB,aAHhB,kBAQR,EAAC,IAAD,CAAOA,MAAO,kBACV,yCAC+B,uCAD/B,mFAEiD,2BAFjD,qDAKA,EAAC,IAAD,KACI,4BACgB,aADhB,eAEgB,aAFhB,eAGgB,aAHhB,kBASZ,EAAC,IAAD,KACI,EAAC,IAAD,CAAOA,MAAO,0BACV,+CACqC,6BADrC,UACiE,8BADjE,yBAC6G,qCAD7G,KAIA,WACI,EAAC,IAAD,KAASH,EAAT,OAEJ,YACI,YACI,EAAC,IAAD,eADJ,mDAGA,YACI,EAAC,IAAD,UADJ,gDAGA,YACI,EAAC,IAAD,UADJ,eACkC,EAAC,IAAD,UADlC,8DAEyB,EAAC,IAAD,KAASA,EAAT,MAFzB,iDAOR,EAAC,IAAD,CAAOG,MAAO,kBACV,6CACmC,mDADnC,+DAIA,EAAC,IAAD,KAASH,EAAT,MACA,EAAC,IAAD,oEAEI,EAAC,IAAD,KAASA,EAAT,SAIZ,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,oBACV,wBACc,EAAC,IAAD,KAASH,EAAT,MADd,2GAIA,yCAC+B,EAAC,IAAD,KAASA,EAAT,MAD/B,2BAEO,EAAC,IAAD,KAASA,EAAT,MAFP,mDAGO,EAAC,IAAD,KAASA,EAAT,MAHP,4BAKA,8GAIJ,EAAC,IAAD,CAAOG,MAAO,gDACV,YACI,qBAAU,kCAAV,KACA,4BAAiB,0BAAjB,KACA,YAAI,kBAAJ,sBACA,YAAI,kBAAJ,uBACA,YAAI,kBAAJ,mDAIZ,EAAC,IAAD,CAASA,MAAO,uCACZ,EAAC,IAAD,CAAOA,MAAO,mBACV,+CACqC,mBADrC,KAGA,4BACkB,EAAC,IAAD,KAASH,EAAT,MADlB,KAGA,EAAC,IAAD,iCAC6B,EAAC,IAAD,UAD7B,kBAC8D,EAAC,IAAD,KAASA,EAAT,MAD9D,MAIJ,EAAC,IAAD,CAAOG,MAAO,sBACV,qDAC2C,wCAD3C,KAGA,4BACkB,EAAC,IAAD,KAASH,EAAT,MADlB,KAGA,EAAC,IAAD,6DACyD,EAAC,IAAD,KAASA,EAAT,MADzD,OAKR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,mBACV,6CACmC,8BADnC,KAGA,EAAC,IAAD,KACI,EAAC,IAAD,KAASH,EAAT,MADJ,2EAKJ,EAAC,IAAD,CAAOG,MAAO,aACV,6CACmC,iCADnC,KAGA,EAAC,IAAD,KACI,iDACuC,EAAC,IAAD,KAASH,EAAT,MADvC,KAGA,8BACoB,EAAC,IAAD,KAASA,EAAT,MADpB,UAEQ,EAAC,IAAD,KAASA,EAAT,MAFR,uCAIA,qCAC2B,EAAC,IAAD,KAASA,EAAT,MAD3B,4DAE8C,0BAF9C,uBAOZ,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,6BACV,kEACwD,8BADxD,KAGA,qGAGA,wFAIJ,EAAC,IAAD,CAAOA,MAAO,sBACV,kEACwD,iCADxD,KAGA,uGAKR,EAAC,IAAD,CAASA,MAAO,4CACZ,EAAC,IAAD,CAAOA,MAAO,eACV,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOA,MAAO,mBACV,yEAGA,EAAC,IAAD,KAASH,EAAT,MACA,mEACyD,wCADzD,KAGA,EAAC,IAAD,KACKA,EADL,QAKR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,kBACV,oDAC0C,UAAMA,MAAO,kDAAb,KAD1C,2BAGA,uCAC6B,8BAD7B,gFAGA,2DACiD,EAAC,IAAD,KAASH,EAAT,MADjD,MAIJ,EAAC,IAAD,CAAOG,MAAO,oBACV,yDAC+C,UAAMA,MAAO,uFAAb,KAD/C,2BAGA,kEACwD,qBADxD,gCACkG,sCADlG,oBAGA,2DACiD,EAAC,IAAD,KAASH,EAAT,MADjD,OAKR,EAAC,IAAD,CAASG,MAAO,kBACZ,EAAC,IAAD,CAAOA,MAAO,qBACV,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOA,MAAO,uBACV,EAAC,IAAD,eAGR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOA,MAAO,iCAAsB,EAAC,IAAD,KAASH,EAAT,QAChC,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOG,MAAO,iCAAsB,EAAC,IAAD,KAASH,EAAT,MAAtB,kBACV,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOG,MAAO,iCAAsB,EAAC,IAAD,KAASH,EAAT,QAChC,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOG,MAAO,iCAAsB,EAAC,IAAD,KAASH,EAAT,QAChC,EAAC,IAAD,eAGR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOG,MAAO,iCAAsB,EAAC,IAAD,KAASH,EAAT,QAChC,EAAC,IAAD,eAGR,EAAC,IAAD,CAASG,MAAO,oBACZ,EAAC,IAAD,CAAOA,MAAO,oBACV,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOA,MAAO,0BACV,EAAC,IAAD,eAGR,EAAC,IAAD,CAASA,MAAO,4CACZ,EAAC,IAAD,CAAOA,MAAO,eACV,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOA,MAAO,mBACV,EAAC,IAAD,eAGR,EAAC,IAAD,KACI,EAAC,IAAD,CAAOA,MAAO,qBACV,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOA,MAAO,2CACV,EAAC,IAAD,eAGR,EAAC,IAAD,CAASA,MAAO,qBACZ,EAAC,IAAD,CAAOA,MAAO,uBACV,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOA,MAAO,uBACV,EAAC,IAAD,eAGR,EAAC,IAAD,CAASA,MAAO,2CACZ,EAAC,IAAD,CAAOA,MAAO,mBACV,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOA,MAAO,oBACV,EAAC,IAAD,eAGR,EAAC,IAAD,CAASA,MAAO,4BACZ,EAAC,IAAD,CAAOA,MAAO,eACV,EAAC,IAAD,eAGR,EAAC,IAAD,CAASA,MAAO,4BACZ,EAAC,IAAD,CAAOA,MAAO,yCACV,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOA,MAAO,sBACV,EAAC,IAAD,eAGR,EAAC,IAAD,CAASA,MAAO,2BACZ,EAAC,IAAD,CAAOA,MAAO,eACV,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOA,MAAO,SACV,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOA,MAAO,qBACV,EAAC,IAAD,cAEJ,EAAC,IAAD,CAAOA,MAAO,qBACV,EAAC,IAAD,kB","file":"route-CalcoloNumerico.chunk.b23aa.js","sourcesContent":["// extracted by mini-css-extract-plugin\nmodule.exports = {\"red\":\"red__2y1B_\",\"orange\":\"orange__dD2kx\",\"yellow\":\"yellow__OEpwl\",\"lime\":\"lime__CVe41\",\"cyan\":\"cyan__26ZAg\",\"blue\":\"blue__LO7Xm\",\"magenta\":\"magenta__1Akee\",\"example\":\"example__2PzAa\"};","// extracted by mini-css-extract-plugin\nmodule.exports = {\"menulist\":\"menulist__2Cmnq\"};","import style from \"./MenuList.less\";\n\nexport default function(props) {\n return (\n
\n )\n}","import style from \"./Example.less\";\n\nexport default function (props) {\n return (\n\n E' composto da:\n
\n\n Prima di iniziare a studiare Calcolo Numerico, potrebbe essere una buona idea ripassare un pochino Algebra Lineare:\n
\n\n Particolari algoritmi che hanno:\n
\n\n Con i numeri floating point può capitare che un certo numero
\n In tal caso, il numero si indica con
\n È la differenza tra il numero desiderato e il numero rappresentato:\n
\n\n Indica quanto il numero rappresentato differisce dal numero desiderato:\n
\n\n Metodo con cui gestire gli underflow floating point: le cifre meno significative\n vengono rimosse.\n
\n\n 1.00 → 1.0\n
\n 1.01 → 1.0
\n 1.10 → 1.1
\n 1.11 → 1.1\n
\n Metodo con cui gestire gli underflow floating point: se la cifra più significativa di\n quelle che devono essere rimosse è 1, allora aumenta di 1 anche quella meno signficativa\n che viene tenuta.\n
\n\n 1.00 → 1.0\n
\n 1.01 → 1.0
\n 1.10 → 1.1
\n 1.11 → 10.\n
\n Un numero reale rappresentato in virgola mobile ha un errore relativo minore o uguale alla precisione\n di macchina:\n
\n\n
\n Associa un valore reale al suo corrispondente valore floating point, utilizzando uno dei\n due metodi di gestione dell'undeflow.\n
\n\n L'insieme
\n Operazioni tra elementi di
\n Il teorema della precisione di macchina si applica quindi anche ai risultati delle operazioni.\n
\n\n Errore derivato da underflow sui dati.\n
\n\n Si indica con
\n Errore derivato da underflow durante l'esecuzione dell'algoritmo.\n
\n\n Si indica con
\n Sensibilità di un problema all'errore inerente.\n
\n\n Sensibilità di un problema all'errore algoritmico.\n
\n\n Cerchiamo un algoritmo che risolva
\n Calcolare prima
\n Calcolare direttamente
\n È il coefficiente di proporzionalità tra i dati e l'errore inerente.\n
\n\n Essendo sempre maggiore di uno, si può dire che sia un coefficiente di amplificazione.\n
\n\n Minore è l'indice di condizionamento, meglio condizionato è un problema.\n
\n\n È il coefficiente di proporzionalità tra i dati e l'errore algoritmico.\n
\n\n Essendo sempre maggiore di uno, si può dire che sia un coefficiente di amplificazione.\n
\n\n Il condizionamento della risoluzione di sistemi lineari è:\n
\n\n In particolare, è segnato in giallo nella formula il numero di condizionamento:\n
\n\n Metodi che trovano la soluzione esatta* di un sistema lineare.\n
\n\n Tipicamente prevedono la fattorizzazione della matrice dei coefficienti in due sottomatrici più facili da risolvere.\n
\n\n Generalmente hanno una complessità temporale
\n Metodi che trovano una soluzione imperfetta* di un sistema lineare.\n
\n\n Tipicamente prevedono l'applicazione ripetuta di un metodo, in base al quale cambia la velocità di convergenza alla soluzione.\n
\n\n Generalmente hanno una complessità temporale