1
Fork 0
mirror of https://github.com/Steffo99/unisteffo.git synced 2024-11-29 19:34:19 +00:00
triennale-appunti-steffo/docs/route-fisica.chunk.5cab8.js.map
2020-05-27 18:31:11 +02:00

1 line
No EOL
94 KiB
Text
Generated

{"version":3,"sources":["webpack:///./components/old/todo.css","webpack:///./components/old/plus.css","webpack:///./components/Elements/Box.less","webpack:///./components/Latex.js","webpack:///./components/Elements/Panel.less","webpack:///../src/index.js","webpack:///./components/old/minus.js","webpack:///./components/Elements/Box.js","webpack:///./routes/fisica.js","webpack:///./components/old/split.css","webpack:///./components/old/plus.js","webpack:///./components/Elements/Panel.js","webpack:///./components/old/todo.js","webpack:///./components/old/split.js","webpack:///./components/old/minus.css","webpack:///./components/Latex.css","webpack:///./contexts/LatexDefaultInline.js"],"names":["module","exports","props","renderColor","useContext","LatexRenderColor","defaultInline","LatexDefaultInline","src","undefined","inline","children","alt","title","class","style","latex","getHookState","index","options","_hook","currentComponent","hooks","__hooks","_list","_pendingEffects","length","push","useState","initialState","useReducer","invokeOrReturn","reducer","init","hookState","currentIndex","_component","_value","nextValue","action","setState","useEffect","callback","args","state","argsChanged","_args","useLayoutEffect","_renderCallbacks","useRef","initialValue","useMemo","current","useImperativeHandle","ref","createHandle","concat","factory","_factory","useCallback","context","provider","_id","_defaultValue","sub","value","useDebugValue","formatter","flushAfterPaintEffects","afterPaintEffects","some","component","_parentDom","forEach","invokeCleanup","invokeEffect","e","_catchError","_vnode","hook","_cleanup","result","oldArgs","newArgs","arg","f","prevRaf","oldBeforeRender","_render","oldAfterDiff","diffed","oldCommit","_commit","oldBeforeUnmount","unmount","vnode","c","requestAnimationFrame","raf","done","clearTimeout","timeout","cancelAnimationFrame","setTimeout","window","commitQueue","filter","cb","Minus","render","minus","this","Component","BoxColors","Object","freeze","RED","red","ORANGE","orange","YELLOW","yellow","LIME","lime","CYAN","cyan","BLUE","blue","MAGENTA","magenta","DEFAULT","default","color","box","r","String","raw","Fisica","Provider","href","Plus","plus","contents","Todo","todo","Split","Array","isArray","map","element","splitchild","split","splitparent","createContext"],"mappings":"4EACAA,EAAOC,QAAU,CAAC,KAAO,gB,mBCAzBD,EAAOC,QAAU,CAAC,KAAO,gB,mBCAzBD,EAAOC,QAAU,CAAC,IAAM,aAAa,QAAU,iBAAiB,IAAM,aAAa,OAAS,gBAAgB,OAAS,gBAAgB,KAAO,cAAc,KAAO,cAAc,KAAO,cAAc,QAAU,mB,mCCD9M,yEAKe,aAASC,GAEvB,IAAIC,EAAcC,YAAWC,KACzBC,EAAgBF,YAAWG,KAa/B,OACC,SAAKC,IAAG,gDAXWC,IAAjBP,EAAMQ,OACIJ,EAGAJ,EAAMQ,QAGM,WAAa,IAC1B,aAAyBP,EAAzB,KAAyCD,EAAMS,SAA/C,MAITC,IAAKV,EAAMS,SACXE,MAAOX,EAAMS,SACbG,MAAOC,IAAMC,W,yCCxBjBhB,EAAOC,QAAU,CAAC,MAAQ,eAAe,SAAW,oB,kCCqFpD,SAASgB,EAAaC,GACjBC,UAAQC,KAAOD,UAAQC,IAAMC,OAM3BC,EACLD,EAAiBE,MAChBF,EAAiBE,IAAU,CAAEC,GAAO,GAAIC,IAAiB,YAEvDP,GAASI,EAAME,GAAME,QACxBJ,EAAME,GAAMG,KAAK,IAEXL,EAAME,GAAMN,GAMb,SAASU,EAASC,UACjBC,EAAWC,EAAgBF,GASnC,SAAgBC,EAAWE,EAASH,EAAcI,OAE3CC,EAAYjB,EAAakB,YAC1BD,EAAUE,MACdF,EAAUE,IAAaf,EAEvBa,EAAUG,GAAS,CACjBJ,EAAiDA,EAAKJ,GAA/CE,SAA0BF,GAElC,gBACOS,EAAYN,EAAQE,EAAUG,GAAO,GAAIE,GAC3CL,EAAUG,GAAO,KAAOC,IAC3BJ,EAAUG,GAAO,GAAKC,EACtBJ,EAAUE,IAAWI,SAAS,QAM3BN,EAAUG,GAOX,SAASI,EAAUC,EAAUC,OAE7BC,EAAQ3B,EAAakB,KACvBU,EAAYD,EAAME,IAAOH,KAC5BC,EAAMP,GAASK,EACfE,EAAME,IAAQH,EAEdtB,EAAiBE,IAAQE,IAAgBE,KAAKiB,IAQzC,SAASG,EAAgBL,EAAUC,OAEnCC,EAAQ3B,EAAakB,KACvBU,EAAYD,EAAME,IAAOH,KAC5BC,EAAMP,GAASK,EACfE,EAAME,IAAQH,EAEdtB,EAAiB2B,IAAiBrB,KAAKiB,IAIlC,SAASK,EAAOC,UACfC,GAAQ,iBAAO,CAAEC,QAASF,KAAiB,IAQnD,SAAgBG,EAAoBC,EAAKC,EAAcZ,GACtDI,GACC,WACmB,mBAAPO,EAAmBA,EAAIC,KACzBD,IAAKA,EAAIF,QAAUG,OAErB,MAARZ,EAAeA,EAAOA,EAAKa,OAAOF,IAQ7B,SAASH,EAAQM,EAASd,OAE1BC,EAAQ3B,EAAakB,YACvBU,EAAYD,EAAME,IAAOH,IAC5BC,EAAME,IAAQH,EACdC,EAAMc,IAAWD,EACTb,EAAMP,GAASoB,KAGjBb,EAAMP,GAOP,SAASsB,EAAYjB,EAAUC,UAC9BQ,GAAQ,kBAAMT,IAAUC,GAMzB,SAASvC,EAAWwD,OACpBC,EAAWxC,EAAiBuC,QAAQA,EAAQE,SAC7CD,EAAU,OAAOD,EAAQG,OACxBnB,EAAQ3B,EAAakB,YAEP,MAAhBS,EAAMP,KACTO,EAAMP,MACNwB,EAASG,IAAI3C,IAEPwC,EAAS3D,MAAM+D,MAOhB,SAASC,EAAcD,EAAOE,GAChChD,UAAQ+C,eACX/C,UAAQ+C,cAAcC,EAAYA,EAAUF,GAASA,GAyBvD,SAASG,IACRC,EAAkBC,MAAK,eAClBC,EAAUC,QAEZD,EAAUhD,IAAQE,IAAgBgD,QAAQC,GAC1CH,EAAUhD,IAAQE,IAAgBgD,QAAQE,GAC1CJ,EAAUhD,IAAQE,IAAkB,GACnC,MAAOmD,UACRL,EAAUhD,IAAQE,IAAkB,GACpCN,UAAQ0D,IAAYD,EAAGL,EAAUO,YAKpCT,EAAoB,GA4CrB,SAASK,EAAcK,GAClBA,EAAKC,GAAUD,EAAKC,IAOzB,SAASL,EAAaI,OACfE,EAASF,EAAK1C,KACC,mBAAV4C,IAAsBF,EAAKC,EAAWC,GAOlD,SAASpC,EAAYqC,EAASC,UACrBD,GAAWC,EAAQb,MAAK,SAACc,EAAKlE,UAAUkE,IAAQF,EAAQhE,MAGjE,SAASa,EAAeqD,EAAKC,SACT,mBAALA,EAAkBA,EAAED,GAAOC,E,wVA9UtClD,EAGAd,EAWAiE,E,YARAjB,EAAoB,GAEpBkB,EAAkBpE,UAAQqE,IAC1BC,EAAetE,UAAQuE,OACvBC,EAAYxE,UAAQyE,IACpBC,EAAmB1E,UAAQ2E,QAK/B3E,UAAQqE,IAAU,YACbD,GAAiBA,EAAgBQ,GAGrC5D,EAAe,GADfd,EAAmB0E,EAAM3D,KAGJb,MACpBF,EAAiBE,IAAQE,IAAgBgD,QAAQC,GACjDrD,EAAiBE,IAAQE,IAAgBgD,QAAQE,GACjDtD,EAAiBE,IAAQE,IAAkB,KAI7CN,UAAQuE,OAAS,YACZD,GAAcA,EAAaM,OAEzBC,EAAID,EAAM3D,OACX4D,OAEC1E,EAAQ0E,EAAEzE,IACZD,GACCA,EAAMG,IAAgBC,SA0QJ,IAzQV2C,EAAkB1C,KAAKqE,IAyQRV,IAAYnE,UAAQ8E,yBAC/CX,EAAUnE,UAAQ8E,wBAvBpB,SAAwBvD,OAQnBwD,EAPEC,EAAO,WACZC,aAAaC,GACbC,qBAAqBJ,GACrBK,WAAW7D,IAEN2D,EAAUE,WAAWJ,EAlRR,KAqRE,oBAAVK,SACVN,EAAMD,sBAAsBE,MAcA/B,MAtQ9BjD,UAAQyE,IAAU,SAACG,EAAOU,GACzBA,EAAYnC,MAAK,gBAEfC,EAAUvB,IAAiByB,QAAQC,GACnCH,EAAUvB,IAAmBuB,EAAUvB,IAAiB0D,QAAO,mBAC9DC,EAAGtE,IAASsC,EAAagC,MAEzB,MAAO/B,GACR6B,EAAYnC,MAAK,YACZ0B,EAAEhD,MAAkBgD,EAAEhD,IAAmB,OAE9CyD,EAAc,GACdtF,UAAQ0D,IAAYD,EAAGL,EAAUO,SAI/Ba,GAAWA,EAAUI,EAAOU,IAGjCtF,UAAQ2E,QAAU,YACbD,GAAkBA,EAAiBE,OAEjCC,EAAID,EAAM3D,OACX4D,OAEC1E,EAAQ0E,EAAEzE,OACZD,MAEFA,EAAME,GAAMiD,SAAQ,mBAAQM,EAAKC,GAAYD,EAAKC,OACjD,MAAOJ,GACRzD,UAAQ0D,IAAYD,EAAGoB,EAAElB,S,0GCzEP8B,E,gLACpBC,OAAA,WACC,OAAO,UAAM/F,MAAOC,IAAM+F,OAAQC,KAAK7G,MAAMS,W,aAFZqG,a,2DCHnC,qCAEaC,EAAYC,OAAOC,OAAO,CACnCC,IAAKrG,IAAMsG,IACXC,OAAQvG,IAAMwG,OACdC,OAAQzG,IAAM0G,OACdC,KAAM3G,IAAM4G,KACZC,KAAM7G,IAAM8G,KACZC,KAAM/G,IAAMgH,KACZC,QAASjH,IAAMkH,QACfC,QAASnH,IAAMoH,UAGJ,aAAUjI,GACrB,IAAIkI,EAAQnB,EAAUiB,QAKtB,OAJGhI,EAAMkI,QACLA,EAAQlI,EAAMkI,OAId,SAAKtH,MAAOC,IAAMsH,IAAM,IAAMD,GACzBlI,EAAMS,a,gukBCZb2H,GAAIC,OAAOC,IAEIC,G,yLACpB5B,OAAA,WACO,OACI,EAAC,KAAmB6B,SAApB,CAA6BzE,OAAO,GACpC,aACI,sBACA,EAAC,KAAD,CAAOpD,MAAM,WACT,EAAC,KAAD,CAAOA,MAAM,yBACT,sDAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,SACT,mDAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,iGAIJ,EAAC,KAAD,CAAOzH,MAAM,cACT,4CAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,8CACoC,EAAC,KAAD,UADpC,eACgE,EAAC,KAAD,UADhE,MAIJ,EAAC,KAAD,CAAOzH,MAAM,oBACT,mFAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,oDAC0C,EAAC,KAAD,KAAQA,GAAR,OAD1C,OACyE,EAAC,KAAD,KAAQA,GAAR,OADzE,MAIJ,EAAC,KAAD,CAAOzH,MAAM,uBACT,2EAGA,YACI,YAAI,EAAC,KAAD,KAAQyH,GAAR,QACJ,YAAI,EAAC,KAAD,KAAQA,GAAR,QACJ,YAAI,OAAGK,KAAK,0DAAR,8BAER,mCAKR,EAAC,KAAD,CAAO9H,MAAM,mBACT,EAAC,KAAD,CAAOA,MAAM,eACT,mGAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,uBACT,yIAC+H,oBAD/H,KAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,yBACT,0EAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,UAIZ,EAAC,KAAD,CAAOzH,MAAM,oBACT,EAAC,KAAD,CAAOA,MAAM,iBACT,4EAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,WACI,EAAC,KAAD,UADJ,SAC0B,kDAD1B,YAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,kBACT,6HACmH,mBADnH,cAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,WACI,EAAC,KAAD,UADJ,SAC0B,kCAD1B,yBAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,sBACT,qEAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,iDACuC,kCADvC,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,WACI,EAAC,KAAD,KAAQA,GAAR,UAIZ,EAAC,KAAD,CAAOzH,MAAM,qBACT,EAAC,KAAD,CAAOA,MAAM,WACT,0EAGA,qDAC2C,+BAD3C,wCACuG,4BADvG,kCAIJ,EAAC,KAAD,CAAOA,MAAM,mBACT,6GAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,oBACT,kFAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,YACT,8DAGA,gEAIJ,EAAC,KAAD,CAAOA,MAAM,YACT,0FAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,2FAKR,EAAC,KAAD,CAAOzH,MAAM,cACT,EAAC,KAAD,CAAOA,MAAM,eACT,sFAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,YACT,4EAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,4EACkE,kCADlE,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,iBACT,2EAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,4EACkE,uCADlE,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAO,kCAAuB,sCACjC,wEAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,8EAGA,WACI,EAAC,KAAD,KAAQA,GAAR,UAIZ,EAAC,KAAD,CAAOzH,MAAM,4BACT,EAAC,KAAD,CAAOA,MAAM,eACT,iBACO,2BADP,OAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,YACT,0BAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,iBACT,qCAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,SACT,mDAGA,WACI,EAAC,KAAD,oBAIZ,EAAC,KAAD,CAAOA,MAAM,4CACT,EAAC,KAAD,CAAOA,MAAM,eACT,iBACO,2BADP,OAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,YACT,2BAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,iBACT,0BAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,SACT,mDAGA,WACI,EAAC,KAAD,sBAIZ,EAAC,KAAD,CAAOA,MAAM,0BACT,EAAC,KAAD,CAAOA,MAAM,YACT,wEAGA,8CAIJ,EAAC,KAAD,CAAOA,MAAM,qBACT,qEAGA,mCAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,eACT,gCAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,YACT,4DACkD,EAAC,KAAD,KAAQyH,GAAR,OADlD,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,iBACT,yDAC+C,EAAC,KAAD,KAAQyH,GAAR,OAD/C,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,SACT,mDAGA,WACI,EAAC,KAAD,sBAIZ,EAAC,KAAD,CAAOA,MAAM,iBACT,EAAC,KAAD,CAAOA,MAAM,mBACT,uKAIJ,EAAC,KAAD,CAAOA,MAAM,2BACT,oHAC0G,EAAC,KAAD,KAAQyH,GAAR,OAD1G,oBAKR,EAAC,KAAD,CAAOzH,MAAM,2BACT,EAAC,KAAD,KACI,iCAGA,+CAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,QACT,+EAGA,4BACkB,EAAC,KAAD,KAAQyH,GAAR,OADlB,yCAIJ,EAAC,KAAD,CAAOzH,MAAM,YACT,4DAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,iBACT,4GAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,oBACT,kDAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,UAIZ,EAAC,KAAD,CAAOzH,MAAM,qBACT,EAAC,KAAD,CAAOA,MAAM,UACT,4DAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,mIAIJ,EAAC,KAAD,CAAOzH,MAAM,oBACT,qEAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,kHAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,qCACT,qEAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,mBACS,EAAC,KAAD,UADT,4DAIJ,EAAC,KAAD,CAAOzH,MAAM,+BACT,sEAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,sBACT,gJAGA,4CACkC,+BADlC,QAC8D,kBAD9D,wCAGA,+GAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,WACT,yDAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,UAIZ,EAAC,KAAD,CAAOzH,MAAM,kBACT,EAAC,KAAD,CAAOA,MAAM,oBACT,uDAC6C,EAAC,KAAD,iBAD7C,MACqE,EAAC,KAAD,iBADrE,KAGA,6EAGA,0CACgC,EAAC,KAAD,KAAQyH,GAAR,OADhC,KAGA,sBACY,EAAC,KAAD,YAAgB,EAAC,KAAD,aAD5B,2BACuE,EAAC,KAAD,eADvE,oBAIJ,EAAC,KAAD,CAAOzH,MAAM,yBACT,kBACQ,OAAG8H,KAAK,sCAAR,QADR,+DAGA,0DACgD,yBADhD,sDACoH,uBADpH,KAGA,WACI,sDAIZ,EAAC,KAAD,CAAO9H,MAAM,kBACT,EAAC,KAAD,CAAOA,MAAM,kBACT,0GAKR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOA,MAAM,iBACT,+FACqF,0BADrF,qEACyK,EAAC,KAAD,yBADzK,MACyM,EAAC,KAAD,iBADzM,oBAKR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOA,MAAM,gCACT,+DACqD,2CADrD,MAIJ,EAAC,KAAD,CAAOA,MAAM,+BACT,8EACoE,wCADpE,MAIJ,EAAC,KAAD,CAAOA,MAAM,gCACT,gEACsD,EAAC,KAAD,oBADtD,2CACsH,EAAC,KAAD,sBADtH,wEACuN,EAAC,KAAD,qBADvN,mCAGA,gEACsD,EAAC,KAAD,sBADtD,+FAGA,kGACwF,EAAC,KAAD,mCADxF,qCAKR,EAAC,KAAD,CAAOA,MAAM,mBACT,EAAC,KAAD,CAAOA,MAAM,oBACT,kEAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,WACI,EAAC,KAAD,KAAQA,GAAR,OADJ,SAC+B,kCAD/B,YACkE,EAAC,KAAD,KAAQA,GAAR,OADlE,MAIJ,EAAC,KAAD,CAAOzH,MAAM,mCACT,0BACgB,EAAC,KAAD,KAAQyH,GAAR,OADhB,iDACmF,EAAC,KAAD,KAAQA,GAAR,OADnF,QACsH,qCADtH,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,mBACT,qFAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,oBACT,2DACiD,EAAC,KAAD,cADjD,6BAC6F,EAAC,KAAD,aAD7F,uBAGA,uJAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,0FAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,WACI,EAAC,KAAD,+CAGR,EAAC,KAAD,CAAOzH,MAAM,6CACT,kHAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,uFAKR,EAAC,KAAD,CAAOzH,MAAM,qBACT,EAAC,KAAD,CAAOA,MAAM,gCACT,kEACwD,2CADxD,IAC4F,EAAC,KAAD,KAAQyH,GAAR,OAD5F,OAKR,EAAC,KAAD,CAAOzH,MAAM,sBACT,EAAC,KAAD,CAAOA,MAAO,sCAA2B,+BACrC,qFAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,gDACsC,EAAC,KAAD,KAAQA,GAAR,OADtC,MAGA,sCAC4B,mCAD5B,+GAIJ,EAAC,KAAD,CAAOzH,MAAO,oCAAyB,gCACnC,2FAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,4FAGA,iDACuC,EAAC,KAAD,KAAQA,GAAR,OADvC,OAIJ,EAAC,KAAD,CAAOzH,MAAO,mCAAwB,mBAAQ,UAAMA,MAAM,kBAAZ,MAAR,OAClC,6EAIJ,EAAC,KAAD,CAAOA,MAAO,oCAAyB,mBAAQ,UAAMA,MAAM,qBAAZ,MAAR,OACnC,4FAIJ,EAAC,KAAD,CAAOA,MAAM,qBACT,4DAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,UAIZ,EAAC,KAAD,CAAOzH,MAAM,2BACT,EAAC,KAAD,CAAOA,MAAM,aACT,yFAGA,iDAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,mBACS,EAAC,KAAD,KAAQA,GAAR,OADT,yBACoD,yBADpD,6BAC+F,EAAC,KAAD,KAAQA,GAAR,OAD/F,MAGA,mDAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,WACI,EAAC,KAAD,KAAQA,GAAR,OADJ,SACkC,0BADlC,qDAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAGR,EAAC,KAAD,CAAOzH,MAAM,gBACT,yFAGA,yCAC+B,EAAC,KAAD,iBAD/B,MACuD,EAAC,KAAD,iBADvD,gFAGA,qBACW,uBADX,sEAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAEJ,8FAGA,2EAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAEJ,mBACS,EAAC,KAAD,KAAQA,GAAR,OADT,SACyC,4CADzC,4BACsG,EAAC,KAAD,KAAQA,GAAR,OADtG,6BACqJ,EAAC,KAAD,KAAQA,GAAR,OADrJ,qCAGA,2EACiE,mCADjE,wEACiK,wBADjK,KAGA,iDACuC,EAAC,KAAD,KAAQA,GAAR,MADvC,MAIJ,EAAC,KAAD,CAAOzH,MAAM,eACT,8DAGA,+HAIJ,EAAC,KAAD,CAAOA,MAAM,aACT,wEAGA,wHAKR,EAAC,KAAD,CAAOA,MAAM,yBACT,EAAC,KAAD,CAAOA,MAAM,kBACT,mEAGA,4DAIJ,EAAC,KAAD,CAAOA,MAAM,sBACT,2FAGA,mFAKR,EAAC,KAAD,CAAOA,MAAM,qBACT,EAAC,KAAD,CAAOA,MAAM,qBACT,yCAC+B,uBAD/B,8CAGA,mFAIJ,EAAC,KAAD,CAAOA,MAAM,yBACT,yCAC+B,2BAD/B,+EAGA,yFAKR,EAAC,KAAD,CAAOA,MAAM,0BACT,EAAC,KAAD,CAAOA,MAAM,qBACT,mKAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAGR,EAAC,KAAD,CAAOzH,MAAM,yBACT,gIAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAIZ,EAAC,KAAD,CAAOzH,MAAM,4BACT,EAAC,KAAD,CAAOA,MAAM,qBACT,2HAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAGR,EAAC,KAAD,CAAOzH,MAAM,yBACT,mKAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAIZ,EAAC,KAAD,CAAOzH,MAAM,cACT,EAAC,KAAD,CAAOA,MAAM,6CACT,gHAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,MADJ,KACiE,EAAC,KAAD,KAAQA,GAAR,MADjE,MAIJ,EAAC,KAAD,CAAOzH,MAAM,mBACT,yDAGA,+BACqB,EAAC,KAAD,KAAQyH,GAAR,MADrB,0CACiF,EAAC,KAAD,UADjF,OAIJ,EAAC,KAAD,CAAOzH,MAAM,oBACT,yCAC+B,yBAD/B,wBAGA,iJAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,OAEJ,WACI,EAAC,KAAD,KAAQA,GAAR,OAEJ,iDACuC,EAAC,KAAD,KAAQA,GAAR,MADvC,OAIJ,EAAC,KAAD,CAAOzH,MAAM,wCACT,yFAGA,wDAIJ,EAAC,KAAD,CAAOA,MAAM,mBACT,gJAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,SAIZ,EAAC,KAAD,CAAOzH,MAAM,oBACT,EAAC,KAAD,CAAOA,MAAO,sDAA2C,uCACrD,0EAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,OAEJ,mBACS,EAAC,KAAD,KAAQA,GAAR,MADT,wCACyE,EAAC,KAAD,KAAQA,GAAR,MADzE,0CAGA,0FAGA,wIAIJ,EAAC,KAAD,CAAOzH,MAAM,8BACT,mGAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,MADJ,IAC+E,OAAGK,KAAK,sFAAR,QAE/E,mBACS,EAAC,KAAD,KAAQL,GAAR,MADT,6BACwD,EAAC,KAAD,KAAQA,GAAR,MADxD,yHAKR,EAAC,KAAD,CAAOzH,MAAM,mBACT,EAAC,KAAD,CAAOA,MAAM,gCACT,sHAIJ,EAAC,KAAD,CAAOA,MAAM,mCACT,+FAGA,2EAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAGR,EAAC,KAAD,CAAOzH,MAAM,oBACT,WACI,qCAA0B,OAAG8H,KAAK,sDAAR,mBAA1B,MAEJ,4CACkC,EAAC,KAAD,UADlC,2DAC0G,EAAC,KAAD,UAD1G,kBACyI,EAAC,KAAD,UADzI,OAGA,WACI,EAAC,KAAD,KAAQL,GAAR,OAEJ,uFAGA,0CACgC,EAAC,KAAD,wBADhC,4CACqG,EAAC,KAAD,aAAiB,EAAC,KAAD,aADtH,IAC0I,EAAC,KAAD,YAAgB,EAAC,KAAD,aAD1J,qBAKR,EAAC,KAAD,CAAOzH,MAAM,8BACT,EAAC,KAAD,CAAOA,MAAM,gCACT,2MAGA,mJAGA,yBAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,OAEJ,mBACS,EAAC,KAAD,UADT,kCACwD,EAAC,KAAD,UADxD,yCAC8G,EAAC,KAAD,UAD9G,oCAIJ,EAAC,KAAD,CAAOzH,MAAM,iCACT,oCAC0B,EAAC,KAAD,KAAQyH,GAAR,MAD1B,4DACwG,EAAC,KAAD,KAAQA,GAAR,MADxG,mDAC6K,4CAD7K,KAGA,WACI,EAAC,KAAD,KAAQA,GAAR,SAIZ,EAAC,KAAD,KACI,EAAC,KAAD,CAAOzH,MAAM,iCACT,2JAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,OAEJ,oCAC0B,OAAGK,KAAK,+CAAR,iBAD1B,kFAIJ,EAAC,KAAD,CAAO9H,MAAM,2BACT,2EAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,OAEJ,mBACS,EAAC,KAAD,KAAQA,GAAR,MADT,4CAIJ,EAAC,KAAD,CAAOzH,MAAM,2BACT,gFAKR,EAAC,KAAD,CAAOA,MAAM,qBACT,EAAC,KAAD,CAAOA,MAAM,0BACT,4CACkC,EAAC,KAAD,KAAQyH,GAAR,MADlC,yBAC6E,EAAC,KAAD,KAAQA,GAAR,MAD7E,qGAGA,sCAC4B,qCAD5B,KAGA,gDAGA,WACI,EAAC,KAAD,KAAQA,GAAR,OAEJ,mBACS,EAAC,KAAD,KAAQA,GAAR,MADT,yEAGA,WACI,EAAC,KAAD,KAAQA,GAAR,QAGR,EAAC,KAAD,CAAOzH,MAAM,sBACT,WACI,EAAC,KAAD,KAAQyH,GAAR,OAEJ,mBACS,EAAC,KAAD,KAAQA,GAAR,MADT,+CACgF,EAAC,KAAD,KAAQA,GAAR,MADhF,yBAC0K,EAAC,KAAD,KAAQA,GAAR,MAD1K,4BAC6N,EAAC,KAAD,KAAQA,GAAR,MAD7N,eAKR,EAAC,KAAD,CAAOzH,MAAM,iBACT,EAAC,KAAD,CAAOA,MAAM,aACT,8EACoE,OAAG8H,KAAK,kDAAR,oBADpE,KAGA,sGAGA,qFAGA,WACI,EAAC,KAAD,KAAQL,GAAR,OAEJ,kBACQ,EAAC,KAAD,KAAQA,GAAR,MADR,kCAC2F,EAAC,KAAD,KAAQA,GAAR,MAD3F,uBAIJ,EAAC,KAAD,CAAOzH,MAAM,yBACT,sGAGA,6GAGA,mEAGA,uCAC6B,EAAC,KAAD,KAAQyH,GAAR,MAD7B,oGACmJ,EAAC,KAAD,KAAQA,GAAR,MADnJ,OAKR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOzH,MAAM,mBACT,uDAGA,8CAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,OAEJ,yDAGA,WACI,EAAC,KAAD,KAAQA,GAAR,OAEJ,kBACQ,EAAC,KAAD,KAAQA,GAAR,MADR,KAGA,yDAGA,WACI,EAAC,KAAD,KAAQA,GAAR,OAEJ,kEAGA,iKAKR,EAAC,KAAD,KACI,EAAC,KAAD,CAAOzH,MAAM,cACT,gHAGA,mGAKR,EAAC,KAAD,CAAOA,MAAM,kBACT,EAAC,KAAD,CAAOA,MAAM,kBACT,WACI,EAAC,KAAD,uBAEJ,8IACoI,EAAC,KAAD,KAAQyH,GAAR,MADpI,oCAGA,yGAGA,6DACmD,EAAC,KAAD,KAAQA,GAAR,MADnD,2CAIJ,EAAC,KAAD,CAAOzH,MAAM,UACT,4BACkB,EAAC,KAAD,0BADlB,KAGA,WACI,EAAC,KAAD,kBADJ,qDAC8E,EAAC,KAAD,eAD9E,mFAIJ,EAAC,KAAD,CAAOA,MAAM,sBACT,2HAGA,YACI,iEAAsD,EAAC,KAAD,eAAtD,QAAgF,EAAC,KAAD,6BAAhF,wBACA,+DAAoD,EAAC,KAAD,eAApD,QAA4E,EAAC,KAAD,0BAA5E,oDAEJ,iEAIJ,EAAC,KAAD,CAAOA,MAAM,eACT,iJACuI,EAAC,KAAD,kBADvI,MACkK,EAAC,KAAD,eADlK,OAKR,EAAC,KAAD,CAAOA,MAAO,wBAAa,0CACvB,EAAC,KAAD,CAAOA,MAAM,8BACT,mGAIJ,EAAC,KAAD,CAAOA,MAAM,cACT,yHAGA,+EACqE,EAAC,KAAD,KAAQyH,GAAR,MADrE,wCAGA,WACI,EAAC,KAAD,KAAQA,GAAR,MADJ,iBAIJ,EAAC,KAAD,CAAOzH,MAAM,sCACT,0EAIJ,EAAC,KAAD,CAAOA,MAAM,UACT,iEACuD,qBADvD,KAGA,WACI,EAAC,KAAD,KAAQyH,GAAR,QAGR,EAAC,KAAD,CAAOzH,MAAM,yBACT,kIAGA,qFAGA,mJAGA,qG,GAtpCYmG,e,yCCVpChH,EAAOC,QAAU,CAAC,MAAQ,eAAe,YAAc,qBAAqB,WAAa,sB,0GCEpE2I,E,gLACpB/B,OAAA,WACC,OAAO,UAAM/F,MAAOC,IAAM8H,MAAO9B,KAAK7G,MAAMS,W,aAFZqG,a,2DCHlC,iDAGe,aAAS9G,GACvB,OACC,EAAC,IAAD,CAAKkI,MAAOlI,EAAMkI,OACjB,QAAItH,MAAOC,IAAMF,OACfX,EAAMW,OAER,SAAKC,MAAOC,IAAM+H,UAChB5I,EAAMS,c,kICPUoI,E,gLACpBlC,OAAA,WACC,OAAO,UAAM/F,MAAOC,IAAMiI,MAAOjC,KAAK7G,MAAMS,W,aAFZqG,a,kICAbiC,E,gLACpBpC,OAAA,WACI,IAKOlG,EALHE,EAAQ,KAcf,YAb2BJ,IAArBsG,KAAK7G,MAAMW,QACPA,EAAS,YAAKkG,KAAK7G,MAAMW,QAKzBF,EADDuI,MAAMC,QAAQpC,KAAK7G,MAAMS,UACboG,KAAK7G,MAAMS,SAASyI,KAAI,SAAAC,GAC/B,OAAQ,SAAKvI,MAAOC,IAAMuI,YAAaD,MAIhC,SAAKvI,MAAOC,IAAMuI,YAAavC,KAAK7G,MAAMS,UAGxD,SAAKG,MAAOC,IAAMwI,OACV1I,EACD,SAAKC,MAAOC,IAAMyI,aAAc7I,K,aAnBbqG,a,yCCFnChH,EAAOC,QAAU,CAAC,MAAQ,iB,iBCA1BD,EAAOC,QAAU,CAAC,MAAQ,iB,kCCD1B,gBAEewJ,6BAAc","file":"route-fisica.chunk.5cab8.js","sourcesContent":["// extracted by mini-css-extract-plugin\nmodule.exports = {\"todo\":\"todo__1UVRh\"};","// extracted by mini-css-extract-plugin\nmodule.exports = {\"plus\":\"plus__2u13i\"};","// extracted by mini-css-extract-plugin\nmodule.exports = {\"box\":\"box__3cKyY\",\"default\":\"default__v-emJ\",\"red\":\"red__339Cz\",\"orange\":\"orange__24_8v\",\"yellow\":\"yellow__1Jo9W\",\"lime\":\"lime__34yV5\",\"cyan\":\"cyan__3RqLr\",\"blue\":\"blue__13Wnj\",\"magenta\":\"magenta__2tkzq\"};","import style from './Latex.css';\nimport {useContext} from \"preact/hooks\";\nimport LatexRenderColor from \"../contexts/LatexRenderColor\";\nimport LatexDefaultInline from \"../contexts/LatexDefaultInline\";\n\nexport default function(props) {\n\t// black, blue, brown, cyan, darkgray, gray, green, lightgray, lime, magenta, olive, orange, pink, purple, red, teal, violet, white, yellow\n\tlet renderColor = useContext(LatexRenderColor);\n\tlet defaultInline = useContext(LatexDefaultInline);\n\n\tlet is_inline;\n\tif(props.inline === undefined) {\n\t\tis_inline = defaultInline;\n\t}\n\telse {\n\t\tis_inline = props.inline;\n\t}\n\n\tlet inline = is_inline ? `\\\\inline` : \"\";\n\tlet equation = `${inline} {\\\\color{${renderColor}} ${props.children} }`;\n\n\treturn (\n\t\t<img src={`https://latex.codecogs.com/svg.latex?${equation}`}\n\t\t\t alt={props.children}\n\t\t\t title={props.children}\n\t\t\t class={style.latex}\n\t\t/>\n\t);\n}\n","// extracted by mini-css-extract-plugin\nmodule.exports = {\"title\":\"title__3ZVpg\",\"contents\":\"contents__20_NI\"};","import { options } from 'preact';\n\n/** @type {number} */\nlet currentIndex;\n\n/** @type {import('./internal').Component} */\nlet currentComponent;\n\n/** @type {Array<import('./internal').Component>} */\nlet afterPaintEffects = [];\n\nlet oldBeforeRender = options._render;\nlet oldAfterDiff = options.diffed;\nlet oldCommit = options._commit;\nlet oldBeforeUnmount = options.unmount;\n\nconst RAF_TIMEOUT = 100;\nlet prevRaf;\n\noptions._render = vnode => {\n\tif (oldBeforeRender) oldBeforeRender(vnode);\n\n\tcurrentComponent = vnode._component;\n\tcurrentIndex = 0;\n\n\tif (currentComponent.__hooks) {\n\t\tcurrentComponent.__hooks._pendingEffects.forEach(invokeCleanup);\n\t\tcurrentComponent.__hooks._pendingEffects.forEach(invokeEffect);\n\t\tcurrentComponent.__hooks._pendingEffects = [];\n\t}\n};\n\noptions.diffed = vnode => {\n\tif (oldAfterDiff) oldAfterDiff(vnode);\n\n\tconst c = vnode._component;\n\tif (!c) return;\n\n\tconst hooks = c.__hooks;\n\tif (hooks) {\n\t\tif (hooks._pendingEffects.length) {\n\t\t\tafterPaint(afterPaintEffects.push(c));\n\t\t}\n\t}\n};\n\noptions._commit = (vnode, commitQueue) => {\n\tcommitQueue.some(component => {\n\t\ttry {\n\t\t\tcomponent._renderCallbacks.forEach(invokeCleanup);\n\t\t\tcomponent._renderCallbacks = component._renderCallbacks.filter(cb =>\n\t\t\t\tcb._value ? invokeEffect(cb) : true\n\t\t\t);\n\t\t} catch (e) {\n\t\t\tcommitQueue.some(c => {\n\t\t\t\tif (c._renderCallbacks) c._renderCallbacks = [];\n\t\t\t});\n\t\t\tcommitQueue = [];\n\t\t\toptions._catchError(e, component._vnode);\n\t\t}\n\t});\n\n\tif (oldCommit) oldCommit(vnode, commitQueue);\n};\n\noptions.unmount = vnode => {\n\tif (oldBeforeUnmount) oldBeforeUnmount(vnode);\n\n\tconst c = vnode._component;\n\tif (!c) return;\n\n\tconst hooks = c.__hooks;\n\tif (hooks) {\n\t\ttry {\n\t\t\thooks._list.forEach(hook => hook._cleanup && hook._cleanup());\n\t\t} catch (e) {\n\t\t\toptions._catchError(e, c._vnode);\n\t\t}\n\t}\n};\n\n/**\n * Get a hook's state from the currentComponent\n * @param {number} index The index of the hook to get\n * @returns {import('./internal').HookState}\n */\nfunction getHookState(index) {\n\tif (options._hook) options._hook(currentComponent);\n\t// Largely inspired by:\n\t// * https://github.com/michael-klein/funcy.js/blob/f6be73468e6ec46b0ff5aa3cc4c9baf72a29025a/src/hooks/core_hooks.mjs\n\t// * https://github.com/michael-klein/funcy.js/blob/650beaa58c43c33a74820a3c98b3c7079cf2e333/src/renderer.mjs\n\t// Other implementations to look at:\n\t// * https://codesandbox.io/s/mnox05qp8\n\tconst hooks =\n\t\tcurrentComponent.__hooks ||\n\t\t(currentComponent.__hooks = { _list: [], _pendingEffects: [] });\n\n\tif (index >= hooks._list.length) {\n\t\thooks._list.push({});\n\t}\n\treturn hooks._list[index];\n}\n\n/**\n * @param {import('./index').StateUpdater<any>} initialState\n */\nexport function useState(initialState) {\n\treturn useReducer(invokeOrReturn, initialState);\n}\n\n/**\n * @param {import('./index').Reducer<any, any>} reducer\n * @param {import('./index').StateUpdater<any>} initialState\n * @param {(initialState: any) => void} [init]\n * @returns {[ any, (state: any) => void ]}\n */\nexport function useReducer(reducer, initialState, init) {\n\t/** @type {import('./internal').ReducerHookState} */\n\tconst hookState = getHookState(currentIndex++);\n\tif (!hookState._component) {\n\t\thookState._component = currentComponent;\n\n\t\thookState._value = [\n\t\t\t!init ? invokeOrReturn(undefined, initialState) : init(initialState),\n\n\t\t\taction => {\n\t\t\t\tconst nextValue = reducer(hookState._value[0], action);\n\t\t\t\tif (hookState._value[0] !== nextValue) {\n\t\t\t\t\thookState._value[0] = nextValue;\n\t\t\t\t\thookState._component.setState({});\n\t\t\t\t}\n\t\t\t}\n\t\t];\n\t}\n\n\treturn hookState._value;\n}\n\n/**\n * @param {import('./internal').Effect} callback\n * @param {any[]} args\n */\nexport function useEffect(callback, args) {\n\t/** @type {import('./internal').EffectHookState} */\n\tconst state = getHookState(currentIndex++);\n\tif (argsChanged(state._args, args)) {\n\t\tstate._value = callback;\n\t\tstate._args = args;\n\n\t\tcurrentComponent.__hooks._pendingEffects.push(state);\n\t}\n}\n\n/**\n * @param {import('./internal').Effect} callback\n * @param {any[]} args\n */\nexport function useLayoutEffect(callback, args) {\n\t/** @type {import('./internal').EffectHookState} */\n\tconst state = getHookState(currentIndex++);\n\tif (argsChanged(state._args, args)) {\n\t\tstate._value = callback;\n\t\tstate._args = args;\n\n\t\tcurrentComponent._renderCallbacks.push(state);\n\t}\n}\n\nexport function useRef(initialValue) {\n\treturn useMemo(() => ({ current: initialValue }), []);\n}\n\n/**\n * @param {object} ref\n * @param {() => object} createHandle\n * @param {any[]} args\n */\nexport function useImperativeHandle(ref, createHandle, args) {\n\tuseLayoutEffect(\n\t\t() => {\n\t\t\tif (typeof ref == 'function') ref(createHandle());\n\t\t\telse if (ref) ref.current = createHandle();\n\t\t},\n\t\targs == null ? args : args.concat(ref)\n\t);\n}\n\n/**\n * @param {() => any} factory\n * @param {any[]} args\n */\nexport function useMemo(factory, args) {\n\t/** @type {import('./internal').MemoHookState} */\n\tconst state = getHookState(currentIndex++);\n\tif (argsChanged(state._args, args)) {\n\t\tstate._args = args;\n\t\tstate._factory = factory;\n\t\treturn (state._value = factory());\n\t}\n\n\treturn state._value;\n}\n\n/**\n * @param {() => void} callback\n * @param {any[]} args\n */\nexport function useCallback(callback, args) {\n\treturn useMemo(() => callback, args);\n}\n\n/**\n * @param {import('./internal').PreactContext} context\n */\nexport function useContext(context) {\n\tconst provider = currentComponent.context[context._id];\n\tif (!provider) return context._defaultValue;\n\tconst state = getHookState(currentIndex++);\n\t// This is probably not safe to convert to \"!\"\n\tif (state._value == null) {\n\t\tstate._value = true;\n\t\tprovider.sub(currentComponent);\n\t}\n\treturn provider.props.value;\n}\n\n/**\n * Display a custom label for a custom hook for the devtools panel\n * @type {<T>(value: T, cb?: (value: T) => string | number) => void}\n */\nexport function useDebugValue(value, formatter) {\n\tif (options.useDebugValue) {\n\t\toptions.useDebugValue(formatter ? formatter(value) : value);\n\t}\n}\n\nexport function useErrorBoundary(cb) {\n\tconst state = getHookState(currentIndex++);\n\tconst errState = useState();\n\tstate._value = cb;\n\tif (!currentComponent.componentDidCatch) {\n\t\tcurrentComponent.componentDidCatch = err => {\n\t\t\tif (state._value) state._value(err);\n\t\t\terrState[1](err);\n\t\t};\n\t}\n\treturn [\n\t\terrState[0],\n\t\t() => {\n\t\t\terrState[1](undefined);\n\t\t}\n\t];\n}\n\n/**\n * After paint effects consumer.\n */\nfunction flushAfterPaintEffects() {\n\tafterPaintEffects.some(component => {\n\t\tif (component._parentDom) {\n\t\t\ttry {\n\t\t\t\tcomponent.__hooks._pendingEffects.forEach(invokeCleanup);\n\t\t\t\tcomponent.__hooks._pendingEffects.forEach(invokeEffect);\n\t\t\t\tcomponent.__hooks._pendingEffects = [];\n\t\t\t} catch (e) {\n\t\t\t\tcomponent.__hooks._pendingEffects = [];\n\t\t\t\toptions._catchError(e, component._vnode);\n\t\t\t\treturn true;\n\t\t\t}\n\t\t}\n\t});\n\tafterPaintEffects = [];\n}\n\n/**\n * Schedule a callback to be invoked after the browser has a chance to paint a new frame.\n * Do this by combining requestAnimationFrame (rAF) + setTimeout to invoke a callback after\n * the next browser frame.\n *\n * Also, schedule a timeout in parallel to the the rAF to ensure the callback is invoked\n * even if RAF doesn't fire (for example if the browser tab is not visible)\n *\n * @param {() => void} callback\n */\nfunction afterNextFrame(callback) {\n\tconst done = () => {\n\t\tclearTimeout(timeout);\n\t\tcancelAnimationFrame(raf);\n\t\tsetTimeout(callback);\n\t};\n\tconst timeout = setTimeout(done, RAF_TIMEOUT);\n\n\tlet raf;\n\tif (typeof window != 'undefined') {\n\t\traf = requestAnimationFrame(done);\n\t}\n}\n\n// Note: if someone used options.debounceRendering = requestAnimationFrame,\n// then effects will ALWAYS run on the NEXT frame instead of the current one, incurring a ~16ms delay.\n// Perhaps this is not such a big deal.\n/**\n * Schedule afterPaintEffects flush after the browser paints\n * @param {number} newQueueLength\n */\nfunction afterPaint(newQueueLength) {\n\tif (newQueueLength === 1 || prevRaf !== options.requestAnimationFrame) {\n\t\tprevRaf = options.requestAnimationFrame;\n\t\t(prevRaf || afterNextFrame)(flushAfterPaintEffects);\n\t}\n}\n\n/**\n * @param {import('./internal').EffectHookState} hook\n */\nfunction invokeCleanup(hook) {\n\tif (hook._cleanup) hook._cleanup();\n}\n\n/**\n * Invoke a Hook's effect\n * @param {import('./internal').EffectHookState} hook\n */\nfunction invokeEffect(hook) {\n\tconst result = hook._value();\n\tif (typeof result == 'function') hook._cleanup = result;\n}\n\n/**\n * @param {any[]} oldArgs\n * @param {any[]} newArgs\n */\nfunction argsChanged(oldArgs, newArgs) {\n\treturn !oldArgs || newArgs.some((arg, index) => arg !== oldArgs[index]);\n}\n\nfunction invokeOrReturn(arg, f) {\n\treturn typeof f == 'function' ? f(arg) : f;\n}\n","import style from \"./minus.css\";\nimport { Component } from 'preact';\n\nexport default class Minus extends Component {\n\trender() {\n\t\treturn <span class={style.minus}>{this.props.children}</span>;\n\t}\n}\n","import style from \"./Box.less\";\r\n\r\nexport const BoxColors = Object.freeze({\r\n RED: style.red,\r\n ORANGE: style.orange,\r\n YELLOW: style.yellow,\r\n LIME: style.lime,\r\n CYAN: style.cyan,\r\n BLUE: style.blue,\r\n MAGENTA: style.magenta,\r\n DEFAULT: style.default\r\n})\r\n\r\nexport default function (props) {\r\n let color = BoxColors.DEFAULT;\r\n if(props.color) {\r\n color = props.color;\r\n }\r\n\r\n return (\r\n <div class={style.box + \" \" + color}>\r\n {props.children}\r\n </div>\r\n );\r\n}\r\n","import { Component } from 'preact';\nimport Latex from '../components/Latex';\nimport Panel from '../components/Elements/Panel';\nimport Split from '../components/old/split';\nimport Plus from '../components/old/plus';\nimport Minus from '../components/old/minus';\nimport Todo from '../components/old/todo';\nimport LatexDefaultInline from \"../contexts/LatexDefaultInline\";\n\nconst r = String.raw;\n\nexport default class Fisica extends Component {\n\trender() {\n return (\n <LatexDefaultInline.Provider value={false}>\n <div>\n <h1>Fisica</h1>\n <Split title=\"Vettori\">\n <Panel title=\"Componenti cartesiane\">\n <p>\n Usa le regole base della trigonometria:\n </p>\n <p>\n <Latex>{r`\\vec{v} = \\vec{v}_x + \\vec{v}_y`}</Latex>\n </p>\n <p>\n <Latex>{r`\\left | \\vec{v}_x \\right | = \\left | \\vec{v} \\right | \\sin \\alpha`}</Latex>\n </p>\n <p>\n <Latex>{r`\\left | \\vec{v}_y \\right | = \\left | \\vec{v} \\right | \\cos \\alpha`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Somma\">\n <p>\n Scomponi in componenti, poi sommali:\n </p>\n <p>\n <Latex>{r`\\vec{v} + \\vec{w} = (\\vec{v}_x + \\vec{w}_x) + (\\vec{v}_y + \\vec{w}_y)`}</Latex>\n </p>\n <p>\n Produce il vettore risultante dall'applicazione della regola del parallelogramma.\n </p>\n </Panel>\n <Panel title=\"Differenza\">\n <p>\n Alla fine è sempre una somma:\n </p>\n <p>\n <Latex>{r`\\vec{v} - \\vec{w} = (\\vec{v}_x - \\vec{w}_x) + (\\vec{v}_y - \\vec{w}_y)`}</Latex>\n </p>\n <p>\n Produce il vettore che parte da <Latex>w</Latex> e arriva a <Latex>v</Latex>.\n </p>\n </Panel>\n <Panel title=\"Prodotto scalare\">\n <p>\n Si chiama scalare perchè il risultato è uno scalare, non un vettore.\n </p>\n <p>\n <Latex>{r`\\vec{v} \\cdot \\vec{w} = \\left | \\vec{v} \\right | \\left | \\vec{w} \\right | \\cos \\alpha`}</Latex>\n </p>\n <p>\n Produce il modulo della proiezione di <Latex>{r`\\vec{a}`}</Latex> su <Latex>{r`\\vec{b}`}</Latex>.\n </p>\n </Panel>\n <Panel title=\"Prodotto vettoriale\">\n <p>\n Si chiama vettoriale perchè il risultato è un altro vettore.\n </p>\n <ul>\n <li><Latex>{r`\\vec{c} = \\vec{a} \\times \\vec{b}`}</Latex></li>\n <li><Latex>{r`\\left | \\vec{c} \\right | = \\left | \\vec{a} \\right | \\cdot \\left | \\vec{b} \\right | \\cdot \\sin(\\alpha)`}</Latex></li>\n <li><a href=\"https://it.wikipedia.org/wiki/Regola_della_mano_destra\">Regola della mano destra</a></li>\n </ul>\n <p>\n Non è commutativo!\n </p>\n </Panel>\n </Split>\n <Split title=\"Leggi di Newton\">\n <Panel title=\"1ᵃ: Inerzia\">\n <p>\n Se un corpo puntiforme ha forza risultante nulla, allora la sua velocità non cambia.\n </p>\n <p>\n <Latex>{r`\\Sigma \\vec{F} = 0 \\Longleftrightarrow \\Delta v = 0`}</Latex>\n </p>\n </Panel>\n <Panel title=\"2ᵃ: Proporzionalità\">\n <p>\n La forza risultante di un corpo è direttamente proporzionale alla sua accelerazione, e la costante di proporzionalità è la <i>massa</i>.\n </p>\n <p>\n <Latex>{r`\\Sigma \\vec{F} = m \\vec{a}`}</Latex>\n </p>\n </Panel>\n <Panel title=\"3ᵃ: Azione e reazione\">\n <p>\n Due corpi esercitano forze uguali e opposte uno sull'altro.\n </p>\n <p>\n <Latex>{r`\\vec{F}_{21} = -\\vec{F}_{12}`}</Latex>\n </p>\n </Panel>\n </Split>\n <Split title=\"Forza di gravità\">\n <Panel title=\"Tra due corpi\">\n <p>\n Due corpi puntiformi si attirano uno verso l'altro con forza:\n </p>\n <p>\n <Latex>{r`\\left | \\vec{F} \\right | = G \\frac{m_1 m_2}{s^2}`}</Latex>\n </p>\n <p>\n <Latex>G</Latex> è la <i>costante di gravitazione universale</i> e vale:\n </p>\n <p>\n <Latex>{r`G = 6.67 \\cdot 10^{-11} \\frac{N m^2}{{kg}^2}`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Verso la Terra\">\n <p>\n Se nel sistema di riferimento consideriamo la Terra ferma, allora un corpo è attratto verso la Terra con forza <i>peso</i> uguale a:\n </p>\n <p>\n <Latex>{r`\\left | \\vec{F} \\right | = g m`}</Latex>\n </p>\n <p>\n <Latex>g</Latex> è la <i>costante di gravità</i> della Terra, e vale:\n </p>\n <p>\n <Latex>{r`g = 9.81 \\frac{m}{s^2}`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Su pianeti diversi\">\n <p>\n Per pianeti diversi dalla Terra vale la stessa regola:\n </p>\n <p>\n <Latex>{r`\\left | \\vec{F} \\right | = g m`}</Latex>\n </p>\n <p>\n L'unica differenza è che cambia la <i>costante di gravità</i>:\n </p>\n <p>\n <Latex>{r`g_{luna} = 1.62 \\frac{m}{s^2}`}</Latex>\n </p>\n <p>\n <Latex>{r`g_{marte} = 3.71 \\frac{m}{s^2}`}</Latex>\n </p>\n </Panel>\n </Split>\n <Split title=\"Forze di contatto\">\n <Panel title=\"Normale\">\n <p>\n Si oppone alle forze applicate alla superficie di contatto.\n </p>\n <p>\n Un libro appoggiato su un tavolo ha la <b>forza di gravità</b> che lo attira verso il terreno e la <b>forza normale</b> che lo trattiene dal cadere.\n </p>\n </Panel>\n <Panel title=\"Attrito statico\">\n <p>\n Impedisce a un corpo di muoversi se non viene spinto da una forza che supera una certa soglia:\n </p>\n <p>\n <Latex>{r`\\left | \\vec{F} \\right | \\leq \\mu_{s} \\left | \\vec{F}_{normale} \\right |`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Attrito dinamico\">\n <p>\n Rallenta i corpi che si stanno muovendo finchè essi non si fermano:\n </p>\n <p>\n <Latex>{r`\\left | \\vec{F} \\right | \\leq \\mu_{d} \\left | \\vec{F}_{normale} \\right |`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Tensione\">\n <p>\n E' forza trasmessa tra due estremi di una fune.\n </p>\n <p>\n Può essere redirezionata per mezzo di carrucole.\n </p>\n </Panel>\n <Panel title=\"Elastica\">\n <p>\n Una molla cerca sempre di tornare alla sua posizione indeformata con forza:\n </p>\n <p>\n <Latex>{r`F = -k x`}</Latex>\n </p>\n <p>\n (E' negativa perchè la forza è opposta a quella applicata per deformarla.)\n </p>\n </Panel>\n </Split>\n <Split title=\"Cinematica\">\n <Panel title=\"Spostamento\">\n <p>\n È un vettore che indica la posizione di un corpo rispetto a un'origine.\n </p>\n <p>\n <Latex>{r`\\Delta \\vec{s} = \\vec{s}(fine) - \\vec{s}(inizio)`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Velocità\">\n <p>\n È un vettore che misura la variazione di posizione nel tempo.\n </p>\n <p>\n <Latex>{r`\\vec{v} = \\frac{\\Delta \\vec{s}}{\\Delta t}`}</Latex>\n </p>\n <p>\n Se si considera un intervallo di tempo infinitesimale si dice <i>velocità istantanea</i>:\n </p>\n <p>\n <Latex>{r`\\vec{v} = \\lim_{\\Delta t \\to 0} \\frac{\\Delta \\vec{s}}{\\Delta t} = \\frac{d \\vec{s}}{dt}`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Accelerazione\">\n <p>\n È un vettore che misura la variazione di velocità nel tempo.\n </p>\n <p>\n <Latex>{r`\\vec{a} = \\frac{\\Delta \\vec{v}}{\\Delta t}`}</Latex>\n </p>\n <p>\n Se si considera un intervallo di tempo infinitesimale si dice <i>accelerazione istantanea</i>:\n </p>\n <p>\n <Latex>{r`\\vec{a} = \\lim_{\\Delta v \\to 0} \\frac{\\Delta \\vec{v}}{\\Delta t} = \\frac{d \\vec{v}}{d t} = \\frac{d^2 \\vec{s}}{d t^2}`}</Latex>\n </p>\n </Panel>\n <Panel title={<span>Quantità di moto <small>(momento lineare)</small></span>}>\n <p>\n La quantità di moto è una proprietà vettoriale dei corpi:\n </p>\n <p>\n <Latex>{r`\\vec{p} = m \\vec{v}`}</Latex>\n </p>\n <p>\n Se la forza risultante è nulla, la quantità di moto non cambia.\n </p>\n <p>\n <Latex>{r`\\Sigma \\vec{F} = 0 \\Longleftrightarrow \\Delta \\vec{p} = 0`}</Latex>\n </p>\n </Panel>\n </Split>\n <Split title=\"Moto rettilineo uniforme\">\n <Panel title=\"Spostamento\">\n <p>\n La <i>legge oraria</i> è:\n </p>\n <p>\n <Latex>{r`s(t) = v \\cdot \\Delta t + s(0)`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Velocità\">\n <p>\n È costante:\n </p>\n <p>\n <Latex>{r`v(t) = k`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Accelerazione\">\n <p>\n La velocità non varia:\n </p>\n <p>\n <Latex>{r`a(t) = 0`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Forze\">\n <p>\n Si applica la prima legge di Newton:\n </p>\n <p>\n <Latex>f(t) = 0</Latex>\n </p>\n </Panel>\n </Split>\n <Split title=\"Moto rettilineo uniformemente accelerato\">\n <Panel title=\"Spostamento\">\n <p>\n La <i>legge oraria</i> è:\n </p>\n <p>\n <Latex>{r`s(t) = \\frac{1}{2} a \\cdot (\\Delta t)^2 + v(0) \\cdot (\\Delta t) + s(0)`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Velocità\">\n <p>\n È una retta:\n </p>\n <p>\n <Latex>{r`v(t) = a \\Delta t + v(0)`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Accelerazione\">\n <p>\n È costante:\n </p>\n <p>\n <Latex>{r`a(t) = k`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Forze\">\n <p>\n Si applica la prima legge di Newton:\n </p>\n <p>\n <Latex>f(t) = m a</Latex>\n </p>\n </Panel>\n </Split>\n <Split title=\"Moto armonico semplice\">\n <Panel title=\"Ampiezza\">\n <p>\n E' la distanza dal centro massima che raggiunge il corpo.\n </p>\n <p>\n (L'ampiezza di una sinusoide.)\n </p>\n </Panel>\n <Panel title=\"Velocità angolare\">\n <p>\n Indica quanto in fretta cambia la posizione del corpo.\n </p>\n <p>\n Dipende dal periodo:\n </p>\n <p>\n <Latex>{r`\\omega = \\frac{2 \\pi}{T}`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Spostamento\">\n <p>\n E' una sinusoide:\n </p>\n <p>\n <Latex>{r`s(t) = A \\sin (\\omega \\cdot t + \\phi)`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Velocità\">\n <p>\n E' la sinusoide dello spostamento, sfasata di <Latex>{r`\\frac{\\pi}{2}`}</Latex>:\n </p>\n <p>\n <Latex>{r`v(t) = A \\sin (\\omega \\cdot t + \\phi + \\frac{\\pi}{2})`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Accelerazione\">\n <p>\n E' la sinusoide della velocità, sfasata di <Latex>{r`\\pi`}</Latex>:\n </p>\n <p>\n <Latex>{r`a(t) = A \\sin (\\omega \\cdot t + \\phi + \\pi)`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Forze\">\n <p>\n Si applica la prima legge di Newton:\n </p>\n <p>\n <Latex>f(t) = m a</Latex>\n </p>\n </Panel>\n </Split>\n <Split title=\"Moti composti\">\n <Panel title=\"Moto parabolico\">\n <p>\n Il moto parabolico è dato sommando un moto rettilineo uniforme sull'asse orizzontale e un moto rettilineo uniformemente accelerato sull'asse verticale.\n </p>\n </Panel>\n <Panel title=\"Moto circolare uniforme\">\n <p>\n Il moto parabolico è dato sommando due moti armonici semplici: uno sull'asse X, e l'altro, sfasato di <Latex>{r`\\frac{\\pi}{2}`}</Latex>, sull'asse Y.\n </p>\n </Panel>\n </Split>\n <Split title=\"Moto circolare uniforme\">\n <Panel>\n <h3>\n Velocità angolare\n </h3>\n <p>\n Quanto cambia la fase nel tempo.\n </p>\n <p>\n <Latex>{r`\\omega = \\frac{2 \\pi}{T}`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Fase\">\n <p>\n E' l'angolo percorso dal corpo rispetto alla posizione iniziale.\n </p>\n <p>\n Si indica con <Latex>{r`\\phi`}</Latex>, e generalmente si usa in radianti.\n </p>\n </Panel>\n <Panel title=\"Velocità\">\n <p>\n Si applicano le formule per la circonferenza:\n </p>\n <p>\n <Latex>{r`v = \\frac{\\Delta s}{t} = \\frac{2 \\pi \\cdot r}{T} = \\omega r`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Accelerazione\">\n <p>\n Il corpo ha sempre un accelerazione verso il centro che gli impedisce di abbandonare il moto:\n </p>\n <p>\n <Latex>{r`a = \\frac{v^2}{r} = r \\cdot \\omega^2 = v \\cdot \\omega`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Forza centripeta\">\n <p>\n È verso il centro e si calcola con:\n </p>\n <p>\n <Latex>{r`F = m \\cdot a`}</Latex>\n </p>\n </Panel>\n </Split>\n <Split title=\"Lavoro ed energia\">\n <Panel title=\"Lavoro\">\n <p>\n E' compiuto da una forza che sposta un corpo.\n </p>\n <p>\n <Latex>{r`W = \\vec{F} \\cdot \\vec{s} = F \\cdot \\Delta s \\cdot cos(\\alpha )`}</Latex>\n </p>\n <p>\n (Se la forza non è parallela allo spostamento, il prodotto scalare ci fa considerare solo la componente parallela.)\n </p>\n </Panel>\n <Panel title=\"Energia cinetica\">\n <p>\n Un corpo ha energia cinetica in ogni momento uguale a:\n </p>\n <p>\n <Latex>{r`E_c = \\frac{1}{2} m v^2`}</Latex>\n </p>\n <p>\n Se una forza effettua lavoro su un corpo, cambia la sua energia cinetica pari al lavoro effettuato:\n </p>\n <p>\n <Latex>{r`\\Delta E_c = W`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Energia potenziale gravitazionale\">\n <p>\n Un corpo ha energia potenziale in ogni momento pari a:\n </p>\n <p>\n <Latex>{r`E_{p_g} = m \\cdot g \\cdot h`}</Latex>\n </p>\n <p>\n (Con <Latex>h</Latex> uguale a un altezza scelta come punto di riferimento.)\n </p>\n </Panel>\n <Panel title=\"Energia potenziale elastica\">\n <p>\n Una molla ha sempre energia potenziale elastica pari a:\n </p>\n <p>\n <Latex>{r`E_{p_e} = \\frac{1}{2} k x^2`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Forze conservative\">\n <p>\n Sono conservative le forze per le quali il lavoro compiuto non dipende dal percorso seguito per andare dalla partenza all'arrivo.\n </p>\n <p>\n Ad esempio, è conservativa la <i>forza di gravità</i>, ma <b>non</b> è conservativa la forza di attrito.\n </p>\n <p>\n Se in un sistema ci sono solo forze conservative, allora l'energia meccanica totale si conserva:\n </p>\n <p>\n <Latex>{r`E = E_k + E_p`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Potenza\">\n <p>\n È la velocità di trasferimento di energia:\n </p>\n <p>\n <Latex>{r`P = \\frac{\\Delta E}{\\Delta t}`}</Latex>\n </p>\n </Panel>\n </Split>\n <Split title=\"Elettrostatica\">\n <Panel title=\"Carica elettrica\">\n <p>\n È una proprietà dei corpi che può essere <Plus>positiva</Plus> o <Minus>negativa</Minus>.\n </p>\n <p>\n Si conserva: in un sistema chiuso la carica totale è costante.\n </p>\n <p>\n Esiste un'unità elementare: <Latex>{r`C_{elettrone} = 1.602 \\cdot 10^{-19}`}</Latex>.\n </p>\n <p>\n Cariche <Plus>opp</Plus><Minus>oste</Minus> si attraggono; cariche <Plus>uguali</Plus> si respingono.\n </p>\n </Panel>\n <Panel title=\"Conduttori e isolanti\">\n <p>\n Più <a href=\"https://it.wikipedia.org/wiki/Ione\">ioni</a> ha un corpo, meglio la carica si muove attraverso di esso.\n </p>\n <p>\n I corpi in cui la carica si muove bene sono <i>conduttori</i>, mentre quelli in cui si muove difficilmente sono <i>isolanti</i>.\n </p>\n <p>\n <i>Il corpo umano è un buon conduttore.</i>\n </p>\n </Panel>\n </Split>\n <Split title=\"Polarizzazione\">\n <Panel title=\"Polarizzazione\">\n <p>\n E' possibile polarizzare un corpo per accumulare la carica di un segno in una certa zona.\n </p>\n </Panel>\n </Split>\n <Split>\n <Panel title=\"Messa a terra\">\n <p>\n Se un corpo conduttore è in contatto con la Terra, le cariche su di esso saranno <i>equilibrate</i> e il corpo diventerà elettricamente neutro (con stesso numero di <Plus>cariche positive</Plus> e <Minus>negative</Minus> all'interno).\n </p>\n </Panel>\n </Split>\n <Split>\n <Panel title=\"Polarizzazione per strofinio\">\n <p>\n Strofinando tra loro due corpi isolanti, essi si <i>polarizzeranno per strofinio</i>.\n </p>\n </Panel>\n <Panel title=\"Polarizzazione per contatto\">\n <p>\n Toccando un conduttore con un corpo carico, il conduttore potrà <i>polarizzarsi per contatto</i>.\n </p>\n </Panel>\n <Panel title=\"Polarizzazione per induzione\">\n <p>\n Se un corpo conduttore ha cariche \"esterne\" di un <Plus>certo segno</Plus> vicino, esso avrà tutte le cariche del <Minus>segno opposto</Minus> in equilibrio vicino alle cariche esterne, e tutte le cariche dello <Plus>stesso segno</Plus> più lontano possibile da esse.\n </p>\n <p>\n Mettendo a terra il conduttore, nuove cariche del <Minus>segno opposto</Minus> saranno attratte all'interno del corpo per equilibrare le cariche che si sono allontanate.\n </p>\n <p>\n Staccando il conduttore da terra e rimuovendo le cariche esterne, esso si ritroverà <Minus>caricato del segno opposto</Minus> rispetto alle cariche esterne.\n </p>\n </Panel>\n </Split>\n <Split title=\"Forza elettrica\">\n <Panel title=\"Legge di Coulomb\">\n <p>\n Due corpi carichi si attraggono tra loro con forza:\n </p>\n <p>\n <Latex>{r`\\left | \\vec{F}_{elettrica} \\right | = \\frac{-k \\cdot q_1 \\cdot q_2}{s^2}`}</Latex>\n </p>\n <p>\n <Latex>{r`k`}</Latex> è la <i>costante di Coulomb</i>, e vale <Latex>{r`k = 8.99 \\cdot 10^9 \\frac{N \\cdot m^2}{C^2}`}</Latex>.\n </p>\n </Panel>\n <Panel title=\"Permeabilità dello spazio vuoto\">\n <p>\n La costante <Latex>{r`k`}</Latex> è in realtà dipendente da un altra costante, <Latex>{r`\\epsilon_0`}</Latex>, la <i>permeabilità del vuoto</i>.\n </p>\n <p>\n <Latex>{r`k = \\frac{1}{4 \\pi \\cdot \\epsilon_0}`}</Latex>\n </p>\n <p>\n <Latex>{r`\\left | \\vec{F}_{elettrica} \\right | = \\frac{q_1 \\cdot q_2}{4 \\pi \\cdot \\epsilon_0 \\cdot s^2}`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Campo elettrico\">\n <p>\n Misura che forza viene applicata in ogni punto su una carica unitaria:\n </p>\n <p>\n <Latex>{r`\\vec{E} = \\frac{\\vec{F}_{elettrica}}{q} = \\frac{-k \\cdot q}{s^2}`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Flusso elettrico\">\n <p>\n È la differenza tra \"quanto\" campo elettrico <Plus>entra</Plus> e quanto campo elettrico <Minus>esce</Minus> da una certa area.\n </p>\n <p>\n In qualsiasi superficie chiusa, il flusso elettrico è uguale alla componente perpendicolare del campo elettrico moltiplicato per l'area.\n </p>\n <p>\n <Latex>{r`\\Phi_E = \\vec{E} \\cdot \\vec{A}`}</Latex>\n </p>\n <p>\n Se il campo elettrico è uniforme, se ne può calcolare facilmente il valore:\n </p>\n <p>\n <Latex>{r`\\Phi_E = \\vec{E} \\cdot \\vec{A} = E_\\perp \\cdot A \\cdot \\cos(\\alpha)`}</Latex>\n </p>\n <p>\n <Todo>Circa. E' una specie di integrale...</Todo>\n </p>\n </Panel>\n <Panel title=\"Legge di Gauss per i campi elettrostatici\">\n <p>\n Il flusso elettrico è direttamente proporzionale alla carica presente all'interno della superficie.\n </p>\n <p>\n <Latex>{r`\\Phi_E = 4 \\pi \\cdot k \\cdot q = \\frac{q}{\\epsilon_0}`}</Latex>\n </p>\n <p>\n Ovvero, i campi elettrostatici sono generati dalle cariche elettriche.\n </p>\n </Panel>\n </Split>\n <Split title=\"Energia elettrica\">\n <Panel title=\"Energia potenziale elettrica\">\n <p>\n Un corpo carico vicino ad altre cariche possiede un'<i>energia potenziale elettrica</i> <Latex>{r`U_e`}</Latex>.\n </p>\n </Panel>\n </Split>\n <Split title=\"Circuiti elettrici\">\n <Panel title={<span>Potenziale elettrico <small>(tensione)</small></span>}>\n <p>\n È il valore dell'energia potenziale elettrica per una carica unitaria.\n </p>\n <p>\n <Latex>{r`V = \\frac{U_e}{q}`}</Latex>\n </p>\n <p>\n La sua unità di misura è il Volt (<Latex>{r`V`}</Latex>).\n </p>\n <p>\n In una batteria è detto <i>forza elettromotrice</i>, e corrisponde al lavoro compiuto da una batteria ideale per spostare una carica unitaria tra i due poli.\n </p>\n </Panel>\n <Panel title={<span>Corrente elettrica <small>(intensità)</small></span>}>\n <p>\n Quanta carica passa attraverso un'area (perpendicolare al flusso) nel tempo.\n </p>\n <p>\n <Latex>{r`I = \\frac{\\Delta q}{\\Delta t}`}</Latex>\n </p>\n <p>\n Fintanto che c'è differenza di potenziale, ci sarà anche intensità non nulla.\n </p>\n <p>\n La sua unità di misura è l'Ampere (<Latex>{r`A`}</Latex>).\n </p>\n </Panel>\n <Panel title={<span>Corrente continua <small>(<abbr title=\"Direct Current\">DC</abbr>)</small></span>}>\n <p>\n Quando in un circuito la direzione della corrente è costante.\n </p>\n </Panel>\n <Panel title={<span>Corrente alternata <small>(<abbr title=\"Alternate Current\">AC</abbr>)</small></span>}>\n <p>\n Quando in un circuito la direzione della corrente si alterna periodicamente.\n </p>\n </Panel>\n <Panel title=\"Potenza elettrica\">\n <p>\n Possiamo calcolare la potenza di un circuito:\n </p>\n <p>\n <Latex>{r`P = \\frac{\\Delta U_e}{\\Delta t} = I \\cdot \\Delta V = I^2 \\cdot R = \\frac{(\\Delta V)^2}{R}`}</Latex>\n </p>\n </Panel>\n </Split>\n <Split title=\"Elementi di un circuito\">\n <Panel title=\"Resistore\">\n <p>\n Riduce l'intensità di corrente, e converte parte del potenziale in calore.\n </p>\n <p>\n Il potenziale utilizzato è pari a:\n </p>\n <p>\n <Latex>{r`V = R \\cdot I`}</Latex>\n </p>\n <p>\n Dove <Latex>{r`R`}</Latex> è una costante detta <i>resistenza</i> con unità di misura Ohm (<Latex>{r`\\Omega`}</Latex>).\n </p>\n <p>\n La resistenza di un conduttore vale:\n </p>\n <p>\n <Latex>{r`R = \\rho \\frac{L_{unghezza}}{A_{rea}}`}</Latex>\n </p>\n <p>\n <Latex>{r`\\rho`}</Latex> è la <i>resistività</i> del materiale, e varia in base alla temperatura:\n </p>\n <p>\n <Latex>{r`\\rho = \\rho_0 (1 + \\alpha(T - T_0))`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Condensatore\">\n <p>\n Immagazzina potenziale elettrico, permettendo di riutilizzarla in seguito.\n </p>\n <p>\n Per farlo, cattura cariche <Plus>positive</Plus> e <Minus>negative</Minus> sulle sue due armature; perchè questo avvenga, deve essere compiuto lavoro.\n </p>\n <p>\n Ha una <b>capacità</b> caratteristica, che in un condensatore a facce piane parallele è:\n </p>\n <p>\n <Latex>{r`C = \\frac{q_{massima}}{\\Delta V}`}</Latex>\n </p>\n <p>\n Condensatori di capacità maggiore immagazzinano più potenziale con meno carica.\n </p>\n <p>\n La capacità aumenta se viene messo qualcosa tra le armature:\n </p>\n <p>\n <Latex>{r`C_{nuova} = \\kappa \\cdot \\frac{\\epsilon_0 \\cdot A}{s}`}</Latex>\n </p>\n <p>\n Dove <Latex>{r`\\kappa`}</Latex> è la <i>costante dielettrica relativa</i> del materiale inserito, <Latex>{r`A`}</Latex> l'area di una armatura e <Latex>{r`s`}</Latex> la distanza tra le due armature.\n </p>\n <p>\n Se il campo elettrico creatosi tra le due armature supera la <i>rigidità dielettrica</i> del condensatore, la carica immagazzinata viene persa e ha luogo un <i>breakdown</i>.\n </p>\n <p>\n La sua unità di misura è il Farad (<Latex>{r`Fa`}</Latex>)\n </p>\n </Panel>\n <Panel title=\"Amperometro\">\n <p>\n Misura la corrente elettrica se messo in serie.\n </p>\n <p>\n (Funzionamento: ha una resistenza interna bassisima in modo da non influire significativamente sulla corrente.)\n </p>\n </Panel>\n <Panel title=\"Voltmetro\">\n <p>\n Misura la differenza di potenziale se messo in parallelo.\n </p>\n <p>\n (Funzionamento: ha una resistenza altissima in modo da non influire significativamente sulla tensione.)\n </p>\n </Panel>\n </Split>\n <Split title=\"Principi di Kirchhoff\">\n <Panel title=\"Legge dei nodi\">\n <p>\n Per nodo si intende un qualsiasi punto del circuito.\n </p>\n <p>\n Da un nodo entra ed esce la stessa corrente.\n </p>\n </Panel>\n <Panel title=\"Legge delle maglie\">\n <p>\n Per maglia si intende un qualsiasi percorso chiuso all'interno del circuito.\n </p>\n <p>\n In una maglia chiusa, la somma delle differenze di potenziale è 0.\n </p>\n </Panel>\n </Split>\n <Split title=\"Serie e Parallelo\">\n <Panel title=\"Circuito in serie\">\n <p>\n Più parti di circuito sono <i>in serie</i> se sono consecutive e senza biforcazioni.\n </p>\n <p>\n Parti di circuito in serie sono attraversate dalla stessa corrente.\n </p>\n </Panel>\n <Panel title=\"Circuito in parallelo\">\n <p>\n Più parti di circuito sono <i>in parallelo</i> tra loro se hanno lo stesso punto di partenza e lo stesso punto di arrivo.\n </p>\n <p>\n Parti di circuito in parallelo hanno la stessa differenza di potenziale.\n </p>\n </Panel>\n </Split>\n <Split title=\"Resistenze equivalenti\">\n <Panel title=\"Circuiti in serie\">\n <p>\n Nei circuiti in serie, tutte le resistenze possono essere sostituite con una equivalente dalla resistenza della somma di tutte le quelle sostituite:\n </p>\n <p>\n <Latex>{r`R_{serie} = \\sum_{i=1}^{n} R_i`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Circuiti in parallelo\">\n <p>\n Nei circuiti in parallelo, tutte le resistenze possono essere sostituite con una equivalente dalla resistenza di:\n </p>\n <p>\n <Latex>{r`R_{parallelo} = \\frac{1}{\\sum_{i=1}^{n} \\frac{1}{R_i}}`}</Latex>\n </p>\n </Panel>\n </Split>\n <Split title=\"Condensatori equivalenti\">\n <Panel title=\"Circuiti in serie\">\n <p>\n Nei circuiti in serie, tutti i condensatori possono essere sostituiti con uno equivalente dalla capacità di:\n </p>\n <p>\n <Latex>{r`C_{serie} = \\frac{1}{\\sum_{i=1}^{n} \\frac{1}{C_i}}`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Circuiti in parallelo\">\n <p>\n Nei circuiti in parallelo, tutte i condensatori possono essere sostituite con uno equivalente dalla capacità della somma di tutti quelli sostituiti:\n </p>\n <p>\n <Latex>{r`C_{parallelo} = \\sum_{i=1}^{n} C_n`}</Latex>\n </p>\n </Panel>\n </Split>\n <Split title=\"Magnetismo\">\n <Panel title=\"Permeabilità magnetica dello spazio vuoto\">\n <p>\n E' una costante fisica fondamentale che rappresenta quanto un materiale si magnetizza facilmente.\n </p>\n <p>\n <Latex>{r`\\mu_0 = 4 \\pi \\cdot 10^{-7} \\frac{H}{m}`}</Latex> (<Latex>{r`\\frac{N}{A^2}`}</Latex>)\n </p>\n </Panel>\n <Panel title=\"Campo magnetico\">\n <p>\n Come un campo elettrico, ma per i magneti.\n </p>\n <p>\n Il suo simbolo è <Latex>{r`B`}</Latex>, e la sua unità di misura è il Tesla (<Latex>T</Latex>).\n </p>\n </Panel>\n <Panel title=\"Flusso magnetico\">\n <p>\n È \"quanto\" campo magnetico <b>attraversa</b> un percorso chiuso.\n </p>\n <p>\n Per qualsiasi percorso chiuso, il flusso magnetico è uguale alla somma di tutti i \"sottoflussi\" magnetici calcolati sui suoi lati.\n </p>\n <p>\n <Latex>{r`\\Phi_{B_{i}} = \\vec{B} \\cdot \\vec{L}_n = B \\cdot L_i \\cdot \\sin(\\alpha) = B_\\parallel \\cdot L_i`}</Latex>\n </p>\n <p>\n <Latex>{r`\\Phi_{B} = \\sum_{i=0}^{n_{lati}} \\Phi_{Bn}`}</Latex>\n </p>\n <p>\n La sua unità di misura è il Weber (<Latex>{r`Wb = T \\cdot m^2`}</Latex>).\n </p>\n </Panel>\n <Panel title=\"Legge di Gauss per i campi magnetici\">\n <p>\n Il flusso magnetico attraverso qualsiasi superficie chiusa è sempre nullo.\n </p>\n <p>\n Ovvero, non esistono monopoli magnetici.\n </p>\n </Panel>\n <Panel title=\"Legge di Ampère\">\n <p>\n L'intensità di corrente che attraversa un percorso chiuso è direttamente proporzionale al flusso magnetico dello stesso percorso.\n </p>\n <p>\n <Latex>{r`\\Phi_B = \\mu_0 \\cdot I`}</Latex>\n </p>\n </Panel>\n </Split>\n <Split title=\"Forze magnetiche\">\n <Panel title={<span>Forza magnetica su carica puntiforme <small>(Forza di Lorentz)</small></span>}>\n <p>\n I campi magnetici applicano una forza sulle cariche vicine:\n </p>\n <p>\n <Latex>{r`\\vec{F}_{B} = q \\cdot (\\vec{v} \\times \\vec{B})`}</Latex>\n </p>\n <p>\n Dove <Latex>{r`\\vec{B}`}</Latex> è l'intensità del campo magnetico e <Latex>{r`\\vec{v}`}</Latex> la velocità della carica considerata.\n </p>\n <p>\n Si ha una forza massima se la velocità è perpendicolare al campo magnetico.\n </p>\n <p>\n In un campo magnetico uniforme, una velocità perpendicolare al campo porta alla creazione di un moto circolare uniforme.\n </p>\n </Panel>\n <Panel title=\"Forza magnetica in un filo\">\n <p>\n I campi magnetici influenzano ovviamente anche le cariche presenti in un conduttore:\n </p>\n <p>\n <Latex>{r`\\vec{F}_{magnetica} = I \\cdot (\\vec{L} \\times \\vec{B})`}</Latex> <a href=\"https://it.openprof.com/wb/forza_di_lorentz_su_un_filo_percorso_da_corrente?ch=360\">[1]</a>\n </p>\n <p>\n Dove <Latex>{r`I`}</Latex> è la corrente elettrica, <Latex>{r`\\vec{L}`}</Latex> è un vettore che punta nella direzione di scorrimento della corrente e ha come modulo la lunghezza del conduttore.\n </p>\n </Panel>\n </Split>\n <Split title=\"Campi magnetici\">\n <Panel title=\"Campo magnetico in una spira\">\n <p>\n Una spira in cui passa corrente produce un campo magnetico perpendicolare al piano creato dalla spira.\n </p>\n </Panel>\n <Panel title=\"Campo magnetico di un solenoide\">\n <p>\n Un solenoide sono tante spire avvolte in modo da formare una specie di cilindro.\n </p>\n <p>\n All'interno del solenoide si crea un campo (quasi) uniforme:\n </p>\n <p>\n <Latex>{r`\\left | \\vec{B} \\right | = \\mu_0 \\cdot I \\cdot \\frac{A_{vvolgimenti}}{L_{unghezzafilo}}`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Legge di Oersted\">\n <p>\n <i>Caso particolare della <a href=\"https://it.wikipedia.org/wiki/Legge_di_Amp%C3%A8re\">Legge di Ampère</a>.</i>\n </p>\n <p>\n Il modulo del campo magnetico <Latex>B</Latex> prodotto da un filo in cui passa una corrente continua <Latex>I</Latex> alla distanza <Latex>s</Latex> è:\n </p>\n <p>\n <Latex>{r`\\left | \\vec{B} \\right | = \\frac{\\mu \\cdot I}{2 \\pi r}`}</Latex>\n </p>\n <p>\n Il campo magnetico così creato gira attorno al filo in senso antiorario.\n </p>\n <p>\n Due fili attraversati dalla <Plus>stessa corrente</Plus> si attraggono, due fili attraversati da <Plus>corr</Plus><Minus>enti</Minus> <Plus>opp</Plus><Minus>oste</Minus> si respingono.\n </p>\n </Panel>\n </Split>\n <Split title=\"Induzione elettromagnetica\">\n <Panel title=\"Forza elettromotrice indotta\">\n <p>\n Un conduttore perpendicolare ad un campo magnetico può ottenere una differenza di potenziale se messo in movimento in un direzione perpendicolare alla direzione del conduttore e del campo.\n </p>\n <p>\n La differenza di potenziale si crea a causa della forza magnetica, che fa spostare tutti gli elettroni verso un capo del conduttore.\n </p>\n <p>\n Essa vale:\n </p>\n <p>\n <Latex>{r`\\Delta V_{indotta} = v \\cdot B \\cdot L`}</Latex>\n </p>\n <p>\n Dove <Latex>v</Latex> è la velocità del conduttore, <Latex>B</Latex> è l'intensità del campo magnetico ed <Latex>L</Latex> è la lunghezza del conduttore.\n </p>\n </Panel>\n <Panel title=\"Flusso magnetico in una spira\">\n <p>\n In un campo magnetico <Latex>{r`B`}</Latex> uniforme e perpendicolare al piano di una spira di area <Latex>{r`A`}</Latex>, il flusso magnetico si può determinare con la <i>Legge di Faraday-Neumann-Lenz</i>:\n </p>\n <p>\n <Latex>{r`\\Phi_B = \\vec{B} \\cdot \\vec{A} = B \\cdot A \\cdot \\cos(\\alpha)`}</Latex>\n </p>\n </Panel>\n </Split>\n <Split>\n <Panel title=\"Legge di Faraday-Neumann-Lenz\">\n <p>\n Dice che la forza elettromotrice media indotta in un percorso dipende dalla variazione nel tempo del flusso magnetico nello stesso percorso.\n </p>\n <p>\n <Latex>{r`\\Delta V_{indotta} = - \\frac{\\Delta \\Phi_B}{\\Delta t}`}</Latex>\n </p>\n <p>\n Il meno è dovuto alla <a href=\"https://it.wikipedia.org/wiki/Legge_di_Lenz\">Legge di Lenz</a>, che specifica qualitativamente il verso della forza elettromotrice indotta.\n </p>\n </Panel>\n <Panel title=\"Faraday in un solenoide\">\n <p>\n In un solenoide, la forza elettromotrice indotta è uguale a:\n </p>\n <p>\n <Latex>{r`\\Delta V_{indotta} = - \\frac{N \\cdot \\Delta \\Phi_{B_{spira}}}{\\Delta t} = - \\frac{N \\cdot B \\cdot A \\cdot cos(\\alpha)}{\\Delta t}`}</Latex>\n </p>\n <p>\n Dove <Latex>{r`N`}</Latex> è il numero delle spire del solenoide.\n </p>\n </Panel>\n <Panel title=\"Legge di Ampère-Maxwell\">\n <p>\n Correnti o campi elettrici variabili creano un campo magnetico.\n </p>\n </Panel>\n </Split>\n <Split title=\"Elettromagnetismo\">\n <Panel title=\"Onde elettromagnetiche\">\n <p>\n Nel vuoto, il campo elettrico <Latex>{r`E`}</Latex> e il campo magnetico <Latex>{r`B`}</Latex> sono perpendicolari tra loro e la direzione di propagazione, e sono entrambe funzioni del tempo.\n </p>\n <p>\n Si dice quindi che sono <i>onde elettromagnetiche</i>.\n </p>\n <p>\n Esse sono legate dalla relazione:\n </p>\n <p>\n <Latex>{r`E = c \\cdot B`}</Latex>\n </p>\n <p>\n Dove <Latex>{r`c`}</Latex> è la velocità delle onde (luce) nel vuoto, e a sua volta è uguale a:\n </p>\n <p>\n <Latex>{r`c = \\frac{1}{\\sqrt{\\epsilon_0 \\cdot \\mu_0}} = 3.00 \\cdot 10^8 \\frac{m}{s}`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Formula delle onde\">\n <p>\n <Latex>{r`A(t) = A_{max} \\cdot \\sin \\left ( \\frac{2 \\pi}{\\lambda} - \\omega t + \\phi \\right )`}</Latex>\n </p>\n <p>\n Dove <Latex>{r`A_{max}`}</Latex> è l'ampiezza massima che può avere l'onda, <Latex>{r`\\frac{2 \\pi}{\\lambda} = \\left | \\vec{k} \\right |`}</Latex> è il vettore d'onda, <Latex>{r`\\omega`}</Latex> la frequenza angolare e <Latex>{r`\\phi`}</Latex> la fase.\n </p>\n </Panel>\n </Split>\n <Split title=\"Spettroscopia\">\n <Panel title=\"Emissione\">\n <p>\n I solidi, se portati ad alta temperatura, emettono luce con uno <a href=\"https://it.wikipedia.org/wiki/Spettro_continuo\">spettro continuo</a>.\n </p>\n <p>\n I gas, invece, ad alta temperatura emettono luce solo con particolari lunghezze d'onda.\n </p>\n <p>\n In un gas di idrogeno, le lunghezze d'onda emesse sono ricavabili con:\n </p>\n <p>\n <Latex>{r`\\frac{1}{\\lambda} = R \\left ( \\frac{1}{4} - \\frac{1}{n^2} \\right )`}</Latex>\n </p>\n <p>\n Con <Latex>{r`R = 1.097 \\cdot 10^7 \\frac{1}{m}`}</Latex>, detta costante di Rydberg, e <Latex>{r`n`}</Latex> un numero intero.\n </p>\n </Panel>\n <Panel title=\"Grandezza quantizzata\">\n <p>\n Una grandezza si dice quantizzata (o discreta) se può assumere solo determinati valori.\n </p>\n <p>\n Una grandezza si dice continua se può assumere qualsiasi valore e quindi se non è quantizzata.\n </p>\n <p>\n Energia, momento angolare e raggio sono quantizzati.\n </p>\n <p>\n Nota costante quantica è <Latex>{r`h`}</Latex>, la costante di Planck, ovvero il valore minimo possibile per la carica (talvolta espressa come <Latex>{r`\\hbar = \\left ( \\frac{h}{2 \\pi} \\right )`}</Latex>.\n </p>\n </Panel>\n </Split>\n <Split>\n <Panel title=\"Modello di Bohr\">\n <p>\n L'energia degli elettroni è quantizzata.\n </p>\n <p>\n Inoltre, per essi è valido che:\n </p>\n <p>\n <Latex>{r`m \\cdot v_n \\cdot 2 \\pi \\cdot r = n \\cdot h`}</Latex>\n </p>\n <p>\n Ancora, il raggio delle orbite è uguale a:\n </p>\n <p>\n <Latex>{r`r_n = n^2 \\cdot a_0 = n^2 \\cdot \\frac{\\hbar}{m_{elettrone} \\cdot k \\cdot e^2} `}</Latex>\n </p>\n <p>\n Con <Latex>{r`a_0 = \\left ( \\frac{h}{2 \\pi} \\right )^2 \\cdot \\frac{1}{m_{elettrone} \\cdot k \\cdot e^2} = 5.29 \\cdot 10^{-11} m`}</Latex>.\n </p>\n <p>\n Infine, in ogni stato, l'energia è pari a:\n </p>\n <p>\n <Latex>{r`E_n = \\frac{1}{n^2} \\cdot E_1 = - \\frac{1}{n^2} \\cdot \\frac{a_0^2}{2 \\cdot m \\cdot \\hbar^4} = - \\frac{1}{n^2} \\cdot \\frac{m_{elettrone} \\cdot k^2 \\cdot e^4}{2 \\cdot \\hbar^2}`}</Latex>\n </p>\n <p>\n Due elettroni non possono occupare lo stesso stato.\n </p>\n <p>\n Questo modello funziona solo per atomi con numero atomico basso. Atomi con molti elettroni hanno comportamenti diversi, descritti dal modello di\n </p>\n </Panel>\n </Split>\n <Split>\n <Panel title=\"Nei solidi\">\n <p>\n Nei solidi, le lunghezze d'onda sono talmente tanto vicine da poter essere considerate una banda.\n </p>\n <p>\n Possono però comunque avere dei gap dovuti agli intervalli di energia non ammessi.\n </p>\n </Panel>\n </Split>\n <Split title=\"Semiconduttori\">\n <Panel title=\"Semiconduttori\">\n <p>\n <Todo>Refactor this</Todo>\n </p>\n <p>\n Se la banda di emissione con energia più alta di un corpo è assente o è separata da un gap dell'ordine di grandezza maggiore di <Latex>{r`10^1 eV`}</Latex>, allora il corpo è un isolante.\n </p>\n <p>\n Se invece la banda di emissione si sovrappone a un altra, allora il corpo è un conduttore.\n </p>\n <p>\n Se il gap è invece dell'ordine di grandezza di <Latex>{r`1 eV`}</Latex>, allora il corpo è un semiconduttore.\n </p>\n </Panel>\n <Panel title=\"Lacune\">\n <p>\n Legami in cui <Plus>mancano elettroni</Plus>.\n </p>\n <p>\n <Minus>Elettroni</Minus> di altri legami possono spostarsi per colmare le <Plus>lacune</Plus>, creandone altre, e spostandole in direzione opposta a quella della corrente.\n </p>\n </Panel>\n <Panel title=\"Accettori e donori\">\n <p>\n Se si inserisce in un cristallo semiconduttore si inserisce un atomo con numero atomico diverso, si otterrà:\n </p>\n <ul>\n <li>Con numero atomico maggiore, un semiconduttore di <Minus>tipo N</Minus> con <Minus>elettroni in eccesso</Minus> liberi di scorrere.</li>\n <li>Con numero atomico minore, un semiconduttore di <Plus>tipo P</Plus> con <Plus>lacune in eccesso</Plus> libere di catturare elettroni da altri legami.</li>\n </ul>\n <p>\n Maggiore impurezza porta a maggiore conduttività.\n </p>\n </Panel>\n <Panel title=\"Temperatura\">\n <p>\n Aumentando la temperatura di un semiconduttore si aumenta la conduttività, perchè eccita le particelle e favorisce il movimento di <Minus>elettroni</Minus> e <Plus>lacune</Plus>.\n </p>\n </Panel>\n </Split>\n <Split title={<span>Ottica <small>(non l'abbiamo fatta)</small></span>}>\n <Panel title=\"Assorbimento e riflessione\">\n <p>\n I corpi possono assorbire o riflettere le onde elettromagnetiche che li colpiscono.\n </p>\n </Panel>\n <Panel title=\"Corpo nero\">\n <p>\n Un corpo nero è un corpo che assorbe tutte le onde elettromagnetiche che riceve senza rifletterne nessuna.\n </p>\n <p>\n Le onde assorbite vengono poi riemesse sotto forma di un onda di <Latex>{r`\\lambda`}</Latex> variabile in base alla temperatura.\n </p>\n <p>\n <Latex>{r`\\lambda_{max} \\cdot T`}</Latex> è costante.\n </p>\n </Panel>\n <Panel title=\"Teoria di Planck per il corpo nero\">\n <p>\n L'energia assorbita e emessa dai corpi neri è quantizzata.\n </p>\n </Panel>\n <Panel title=\"Fotone\">\n <p>\n Un onda magnetica con un quanto di energia è detta <i>fotone</i>:\n </p>\n <p>\n <Latex>{r`E_{fotone} = h \\cdot f`}</Latex>\n </p>\n </Panel>\n <Panel title=\"Effetto fotoelettrico\">\n <p>\n A volte, i fotoni che colpiscono un metallo possono estrarvi degli elettroni e creare una differenza di potenziale.\n </p>\n <p>\n Perchè avvenga, la frequenza deve essere maggiore di una certa soglia.\n </p>\n <p>\n Il numero di elettroni estratti dipende dall'intensità dell'onda, mentre l'energia cinetica degli elettroni dipende dalla frequenza.\n </p>\n <p>\n Non c'è nessun ritardo tra l'assorbimento del fotone e l'estrazione di elettroni.\n </p>\n </Panel>\n </Split>\n </div>\n </LatexDefaultInline.Provider>\n )\n\t}\n}\n","// extracted by mini-css-extract-plugin\nmodule.exports = {\"split\":\"split__3dL9r\",\"splitparent\":\"splitparent__2H-vS\",\"splitchild\":\"splitchild__1B-Jt\"};","import style from \"./plus.css\";\nimport { Component } from 'preact';\n\nexport default class Plus extends Component {\n\trender() {\n\t\treturn <span class={style.plus}>{this.props.children}</span>;\n\t}\n}\n","import style from \"./Panel.less\";\nimport Box from \"./Box\";\n\nexport default function(props) {\n\treturn (\n\t\t<Box color={props.color}>\n\t\t\t<h3 class={style.title}>\n\t\t\t\t{props.title}\n\t\t\t</h3>\n\t\t\t<div class={style.contents}>\n\t\t\t\t{props.children}\n\t\t\t</div>\n\t\t</Box>\n\t);\n}\n","import style from \"./todo.css\";\nimport { Component } from 'preact';\n\nexport default class Todo extends Component {\n\trender() {\n\t\treturn <span class={style.todo}>{this.props.children}</span>;\n\t}\n}\n","import style from \"./split.css\";\nimport { Component } from 'preact';\n\nexport default class Split extends Component {\n\trender() {\n\t let title = null;\n\t if(this.props.title !== undefined) {\n title = (<h2>{this.props.title}</h2>)\n }\n\n let children;\n if(Array.isArray(this.props.children)) {\n children = this.props.children.map(element => {\n return (<div class={style.splitchild}>{element}</div>);\n });\n }\n else {\n children = <div class={style.splitchild}>{this.props.children}</div>;\n }\n\t\treturn (\n\t <div class={style.split}>\n {title}\n <div class={style.splitparent}>{children}</div>\n </div>\n );\n\t}\n}\n","// extracted by mini-css-extract-plugin\nmodule.exports = {\"minus\":\"minus__2EaF0\"};","// extracted by mini-css-extract-plugin\nmodule.exports = {\"latex\":\"latex__3zlIu\"};","import {createContext} from \"preact\";\r\n\r\nexport default createContext(true);\r\n"],"sourceRoot":""}