1
Fork 0
mirror of https://github.com/Steffo99/appunti-magistrali.git synced 2024-11-22 02:44:17 +00:00
appunti-steffo/7 - Introduction to quantum information processing/1 - Concetti base/prodotto tensoriale.md

91 lines
1.7 KiB
Markdown
Raw Permalink Normal View History

2024-11-08 04:57:06 +00:00
---
aliases:
- prodotto di Kronecker
- prodotto matriciale diretto
---
2024-05-07 00:49:53 +00:00
[[Operazione]] tra due [[matrice|matrici]] che risulta in una matrice più grande:
$$
\Huge \otimes
$$
2023-09-21 00:46:23 +00:00
2024-05-07 00:49:53 +00:00
Si calcola nel seguente modo:
2023-09-21 00:46:23 +00:00
$$
2024-05-07 00:49:53 +00:00
\begin{bmatrix}
{\color{navy} 0} & {\color{blue} 1} \\
{\color{dodgerblue} 2} & {\color{deepskyblue} 3} \\
\end{bmatrix}
2023-09-21 00:46:23 +00:00
\otimes
2024-05-07 00:49:53 +00:00
\begin{bmatrix}
{\color{darkred} 4} & {\color{red} 5}\\
{\color{firebrick} 6} & {\color{indianred} 7}
\end{bmatrix}
=
\begin{bmatrix}
{\color{navy} 0} \cdot {\color{darkred} 4}
&
{\color{blue} 1} \cdot {\color{darkred} 4}
&
{\color{navy} 0} \cdot {\color{red} 5}
&
{\color{blue} 1} \cdot {\color{red} 5}
\\
{\color{dodgerblue} 2} \cdot {\color{darkred} 4}
&
{\color{deepskyblue} 3} \cdot {\color{darkred} 4}
&
{\color{dodgerblue} 2} \cdot {\color{red} 5}
&
{\color{deepskyblue} 3} \cdot {\color{red} 5}
\\
{\color{navy} 0} \cdot {\color{firebrick} 6}
&
{\color{blue} 1} \cdot {\color{firebrick} 6}
&
{\color{navy} 0} \cdot {\color{indianred} 7}
&
{\color{blue} 1} \cdot {\color{indianred} 7}
\\
{\color{dodgerblue} 2} \cdot {\color{firebrick} 6}
&
{\color{deepskyblue} 3} \cdot {\color{firebrick} 6}
&
{\color{dodgerblue} 2} \cdot {\color{indianred} 7}
&
{\color{deepskyblue} 3} \cdot {\color{indianred} 7}
\\
\end{bmatrix}
=
\begin{bmatrix}
0 & 4 & 0 & 5 \\
8 & 12 & 10 & 15 \\
0 & 6 & 0 & 7 \\
12 & 18 & 14 & 21
\end{bmatrix}
$$
2024-05-21 01:50:41 +00:00
Rappresenta la combinazione di due o più [[qbit]].
2024-05-07 00:49:53 +00:00
$$
\ket{0} \otimes \ket{1}
=
\ket{01}
=
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
\otimes
\begin{bmatrix}
0 \\ 1
\end{bmatrix}
=
\begin{bmatrix}
0 \cdot 0 \\ 1 \cdot 1 \\ 0 \cdot 1 \\ 0 \cdot 1
\end{bmatrix}
=
\begin{bmatrix}
0 \\ 1 \\ 0 \\ 0
\end{bmatrix}
$$