1
Fork 0
mirror of https://github.com/Steffo99/appunti-magistrali.git synced 2024-11-22 10:44:17 +00:00
appunti-steffo/3 - Statistica ed elementi di probabilità/1 - Appunti/2 - Fenomeni aleatori.md

93 lines
3.5 KiB
Markdown
Raw Normal View History

# Fenomeni aleatori
Un fenomeno aleatorio è un qualcosa che ha una certa possibilità di avvenire, e se l'evento viene ripetuto all'infinito, avverrà sempre almeno una volta.
Chiamiamo un fenome aleatorio con la terna (\omega, \corsivo{f}, \mathbb{P}).
## \omega ("omegone", alfabeto)
**\omega** rappresenta l'insieme non vuoto dei possibili risultati dell'evento.
> In un lancio di dado a 6 facce, `\omega = {1, 2, 3, 4, 5, 6}`.
I risultati sono anche detti _esiti sperimentali_.
> **Esercizio 1**
>
> Lanciando un dado, a quale parte di \omega corrispondono gli eventi:
>
> - ...il numero ottenuto è primo: `A = {2, 3, 5}`
> - ...il numero ottenuto è divisibile per due: `B = {2, 4, 6}`
> - ...il numero ottenuto è dispari: `C = {1, 3, 5}`
> - ...il numero ottenuto è divisibile per tre: `D = {3, 6}`
>
> Abbiamo creato dei sottoinsiemi di \omega: `\omega \contains A, B, C, D`
### Negazione
Possiamo anche negare un sottoinsieme di eventi, aggiungendo ¬ prima del nome del sottoinsieme:
> - ...il numero ottenuto **non** è primo: `¬A = {1, 4, 6}`
> - ...il numero ottenuto **non** è divisibile per due: `¬B = {1, 3, 5}`
> - ...il numero ottenuto **non** è dispari: `¬C = B = {2, 4, 6}`
Due negazioni di sottoinsieme si annullano: `¬¬\omeghino = \omeghino`
La definizione matematica è:
```latex
¬A = {\omeghino \in \omega | \omeghino \not \in A}
```
### Intersezioni
Possiamo intersecare due sottoinsiemi per ottenere gli eventi che soddisfano entrambe le condizioni:
> - ...il numero ottenuto è primo **e** divisibile per due: `A \cap B = {2}`
> - ...il numero ottenuto è divisibile per due **e** per tre: `B \cap D = {6}`
> - ...il numero ottenuto è divisibile per due **e** dispari: `B \cap C = {}`
Due sottoinsiemi la cui intersezione è nulla sono **mutualmente esclusivi**.
La definizione matematica è:
```latex
A \cup B = {\omeghino \in \omega | \omeghino \in A\ and\ \omeghino \in B}
```
### Unioni
Possiamo unire due sottoinsiemi per ottenere gli eventi che soddisfano una delle due condizioni:
> - ...il numero ottenuto è primo **o** divisibile per due: `A \cup B = {2, 3, 4, 5, 6}`
> - ...il numero ottenuto è divisibile per due **o** è dispari: `C \cup D = \omega`
La definizione matematica è:
```latex
A \cap B = {\omeghino \in \omega | \omeghino \in A\ or\ \omeghino \in B}
```
### Differenza
Possiamo effettuare la differenza tra due sottoinsiemi, ma non ci è molto utile, in quanto si può comporre con intersezioni e negazioni: `A \ D = A \cap ¬D = {2, 5}`
## \corsivo{f} (sigma-algebra, famiglia degli eventi)
\corsivo{f} è detta la _sigma-algebra_, ed è l'insieme di tutti i risultati di operazioni effettuabili tra gli eventi: sono presenti in questo insieme l'insieme vuoto, l'insieme pieno e gli insiemi dati da qualsiasi combinazione di negazione, unione e intersezione di due sottoinsiemi.
E' quello che in algebra lineare abbiamo chiamato uno **spazio chiuso** rispetto alle operazioni di negazione, intersezione e unione.
E' lo **spazio generato dall'alfabeto \omega**.
> In un lancio di moneta:
> - `\omega = {"testa", "croce"}
> - `\corsivo{f} = {\empty, {"testa"}, {"croce"}, \omega}
Tutti i sottoinsiemi dati da operazioni su insiemi \in \corsivo{f} sono a loro volta \in \corsivo{f}.
Possiamo generare ulteriori sigma-algebre da elementi di \corsivo{f}:
> `\sigmino (B)` è la sigma-algebra generata da B, ovvero la più piccola f contenente `B`, ovvero `{\empty, B}`.
## \mathbb{P} (Probabilità)
\mathbb{P} = \corsivo{f} → \mathbb{R}+