2024-07-05 17:22:13 +00:00
|
|
|
Si vuole creare un [[Hardy state]] su due [[qbit]] nello stato neutro applicandovi due [[gate quantistico universale|gate quantistici universali]].
|
2024-06-04 06:16:05 +00:00
|
|
|
|
2024-07-05 17:22:13 +00:00
|
|
|
## Obiettivo
|
2024-06-04 06:16:05 +00:00
|
|
|
|
2024-07-05 17:22:13 +00:00
|
|
|
Si vogliono quindi trovare i valori di $\mathbf{T}$ e $\mathbf{U}$ per cui:
|
|
|
|
$$
|
|
|
|
\def \kzero {{\color{darkgreen} 3}}
|
|
|
|
\def \kone {{\color{forestgreen} 1}}
|
|
|
|
\def \ktwo {{\color{limegreen} 1}}
|
|
|
|
\def \kthree {{\color{lightgreen} -1}}
|
|
|
|
|
|
|
|
\large
|
|
|
|
{\color{mediumpurple} \mathbf{T}}
|
|
|
|
{\color{mediumorchid} \mathbf{U}}
|
|
|
|
\ket{00}
|
|
|
|
=
|
|
|
|
\frac{
|
|
|
|
\kzero \cdot \ket{00} +
|
|
|
|
\kone \cdot \ket{01} +
|
|
|
|
\ktwo \cdot \ket{10} +
|
|
|
|
\kthree \cdot \ket{11}
|
|
|
|
}{\sqrt{12}}
|
|
|
|
$$
|
|
|
|
|
|
|
|
Ovvero:
|
|
|
|
$$
|
|
|
|
{\color{mediumpurple} \mathbf{T}}
|
|
|
|
\times
|
|
|
|
{\color{mediumorchid} \mathbf{U}}
|
|
|
|
\times
|
|
|
|
{
|
|
|
|
\begin{bmatrix}
|
|
|
|
1\\
|
|
|
|
0\\
|
|
|
|
0\\
|
|
|
|
0
|
|
|
|
\end{bmatrix}
|
|
|
|
}
|
|
|
|
=
|
|
|
|
\frac{1}{\sqrt{12}}
|
|
|
|
\cdot
|
|
|
|
{
|
|
|
|
\begin{bmatrix}
|
|
|
|
\kzero\\
|
|
|
|
\kone\\
|
|
|
|
\ktwo\\
|
|
|
|
\kthree
|
|
|
|
\end{bmatrix}
|
|
|
|
}
|
|
|
|
$$
|
|
|
|
|
|
|
|
## Separazione e raccolta nell'[[Hardy state]]
|
|
|
|
|
|
|
|
Ricordando che è possibile separare i [[qbit]]:
|
|
|
|
$$
|
|
|
|
\def \noteA {{\color{orangered} \Leftarrow}}
|
|
|
|
\def \noteB {{\color{dodgerblue} \Rightarrow}}
|
2024-06-04 06:16:05 +00:00
|
|
|
|
2024-07-05 17:22:13 +00:00
|
|
|
\displaylines{
|
|
|
|
\ket{00} = \ket{0}_\noteA \otimes \ket{0}_\noteB \\
|
|
|
|
\ket{01} = \ket{0}_\noteA \otimes \ket{1}_\noteB \\
|
|
|
|
\ket{10} = \ket{1}_\noteA \otimes \ket{0}_\noteB \\
|
|
|
|
\ket{11} = \ket{1}_\noteA \otimes \ket{1}_\noteB
|
|
|
|
}
|
|
|
|
$$
|
|
|
|
|
|
|
|
Possiamo separare i [[qbit]] dell'[[Hardy state]] in:
|
|
|
|
$$
|
|
|
|
\frac{1}{\sqrt{12}}
|
|
|
|
\cdot
|
|
|
|
\left\{
|
|
|
|
\begin{matrix}
|
|
|
|
\kzero & \cdot & (\ket{0}_\noteA \otimes \ket{0}_\noteB) \\
|
|
|
|
& + \\
|
|
|
|
\kone & \cdot & (\ket{0}_\noteA \otimes \ket{1}_\noteB) \\
|
|
|
|
& + \\
|
|
|
|
\ktwo & \cdot & (\ket{1}_\noteA \otimes \ket{0}_\noteB) \\
|
|
|
|
& + \\
|
|
|
|
\kthree & \cdot & (\ket{1}_\noteA \otimes \ket{1}_\noteB)
|
|
|
|
\end{matrix}
|
|
|
|
\right\}
|
|
|
|
$$
|
|
|
|
|
|
|
|
Poi, possiamo raccogliere lo stato di uno dei due [[qbit]], per esempio $\noteB$, ottenendo:
|
|
|
|
$$
|
|
|
|
\frac{1}{\sqrt{12}}
|
|
|
|
\cdot
|
|
|
|
\left\{
|
|
|
|
\begin{matrix}
|
|
|
|
(\ \kzero \cdot \ket{0}_\noteA + \ktwo \cdot \ket{1}_\noteA\ ) & \otimes & \ket{0}_\noteB \\
|
|
|
|
& + \\
|
|
|
|
(\ \kone \cdot \ket{0}_\noteA + \kthree \cdot \ket{1}_\noteA\ ) & \otimes & \ket{1}_\noteB
|
|
|
|
\end{matrix}
|
|
|
|
\right\}
|
|
|
|
$$
|
2024-06-04 06:16:05 +00:00
|
|
|
|
2024-07-05 17:22:13 +00:00
|
|
|
## Determinare gli elementi di ${\color{mediumorchid}\mathbf{U}}$
|
2024-06-04 06:16:05 +00:00
|
|
|
|
2024-07-05 17:22:13 +00:00
|
|
|
==TODO==
|