1.3 KiB
Operazione tra due tensore che risulta in un tensore di ordine superiore.
\Huge \otimes
Può essere vista come l'applicazione di un "pattern" moltiplicato:
\left[ \begin{matrix}
{\color{Gray} In} & {\color{Gray} Out_{\ket{0}}} & {\color{Gray} Out_{\ket{1}}} \
{\color{Gray} \ket{0}} & 0 & 1 \
{\color{Gray} \ket{1}} & 1 & 0 \
\end{matrix} \right]
\otimes
\left[ \begin{matrix}
{\color{Gray} In} & {\color{Gray} Out_{\ket{0}}} & {\color{Gray} Out_{\ket{1}}} \
{\color{Gray} \ket{0}} & {\color{blue} 0} & {\color{green} 1} \
{\color{Gray} \ket{1}} & {\color{red} 2} & {\color{orange} 3} \
\end{matrix} \right]
= \
\quad \ \left[ \begin{matrix} {\color{Gray} In} & {\color{Gray} Out_{\ket{00}}} & {\color{Gray} Out_{\ket{01}}} & {\color{Gray} Out_{\ket{10}}} & {\color{Gray} Out_{\ket{11}}} \ {\color{Gray} \ket{00}} & {\color{blue} 0} & {\color{blue} 0} & {\color{green} 0} & {\color{green} 1} \ {\color{Gray} \ket{01}} & {\color{blue} 0} & {\color{blue} 0} & {\color{green} 1} & {\color{green} 0} \ {\color{Gray} \ket{10}} & {\color{red} 0} & {\color{red} 2} & {\color{orange} 0} & {\color{orange} 3} \ {\color{Gray} \ket{11}} & {\color{red} 2} & {\color{red} 0} & {\color{orange} 3} & {\color{orange} 0} \ \end{matrix} \right]