mirror of
https://github.com/Steffo99/appunti-magistrali.git
synced 2024-11-25 11:34:18 +00:00
90 lines
1.7 KiB
Markdown
90 lines
1.7 KiB
Markdown
---
|
|
aliases:
|
|
- prodotto di Kronecker
|
|
- prodotto matriciale diretto
|
|
---
|
|
|
|
|
|
[[Operazione]] tra due [[matrice|matrici]] che risulta in una matrice più grande:
|
|
$$
|
|
\Huge \otimes
|
|
$$
|
|
|
|
Si calcola nel seguente modo:
|
|
|
|
$$
|
|
\begin{bmatrix}
|
|
{\color{navy} 0} & {\color{blue} 1} \\
|
|
{\color{dodgerblue} 2} & {\color{deepskyblue} 3} \\
|
|
\end{bmatrix}
|
|
\otimes
|
|
\begin{bmatrix}
|
|
{\color{darkred} 4} & {\color{red} 5}\\
|
|
{\color{firebrick} 6} & {\color{indianred} 7}
|
|
\end{bmatrix}
|
|
=
|
|
\begin{bmatrix}
|
|
{\color{navy} 0} \cdot {\color{darkred} 4}
|
|
&
|
|
{\color{blue} 1} \cdot {\color{darkred} 4}
|
|
&
|
|
{\color{navy} 0} \cdot {\color{red} 5}
|
|
&
|
|
{\color{blue} 1} \cdot {\color{red} 5}
|
|
\\
|
|
{\color{dodgerblue} 2} \cdot {\color{darkred} 4}
|
|
&
|
|
{\color{deepskyblue} 3} \cdot {\color{darkred} 4}
|
|
&
|
|
{\color{dodgerblue} 2} \cdot {\color{red} 5}
|
|
&
|
|
{\color{deepskyblue} 3} \cdot {\color{red} 5}
|
|
\\
|
|
{\color{navy} 0} \cdot {\color{firebrick} 6}
|
|
&
|
|
{\color{blue} 1} \cdot {\color{firebrick} 6}
|
|
&
|
|
{\color{navy} 0} \cdot {\color{indianred} 7}
|
|
&
|
|
{\color{blue} 1} \cdot {\color{indianred} 7}
|
|
\\
|
|
{\color{dodgerblue} 2} \cdot {\color{firebrick} 6}
|
|
&
|
|
{\color{deepskyblue} 3} \cdot {\color{firebrick} 6}
|
|
&
|
|
{\color{dodgerblue} 2} \cdot {\color{indianred} 7}
|
|
&
|
|
{\color{deepskyblue} 3} \cdot {\color{indianred} 7}
|
|
\\
|
|
\end{bmatrix}
|
|
=
|
|
\begin{bmatrix}
|
|
0 & 4 & 0 & 5 \\
|
|
8 & 12 & 10 & 15 \\
|
|
0 & 6 & 0 & 7 \\
|
|
12 & 18 & 14 & 21
|
|
\end{bmatrix}
|
|
$$
|
|
|
|
Rappresenta la combinazione di due o più [[qbit]].
|
|
$$
|
|
\ket{0} \otimes \ket{1}
|
|
=
|
|
\ket{01}
|
|
=
|
|
\begin{bmatrix}
|
|
1 \\ 0
|
|
\end{bmatrix}
|
|
\otimes
|
|
\begin{bmatrix}
|
|
0 \\ 1
|
|
\end{bmatrix}
|
|
=
|
|
\begin{bmatrix}
|
|
0 \cdot 0 \\ 1 \cdot 1 \\ 0 \cdot 1 \\ 0 \cdot 1
|
|
\end{bmatrix}
|
|
=
|
|
\begin{bmatrix}
|
|
0 \\ 1 \\ 0 \\ 0
|
|
\end{bmatrix}
|
|
$$
|