1
Fork 0
mirror of https://github.com/Steffo99/unimore-bda-6.git synced 2024-11-23 00:14:19 +00:00
bda-6-steffo/unimore_bda_6/analysis/vanilla.py

126 lines
4.6 KiB
Python

import nltk
import nltk.classify
import nltk.sentiment
import nltk.sentiment.util
import logging
import typing as t
import itertools
from .base import Input, Category, BaseSA, AlreadyTrainedError, NotTrainedError
from ..log import count_passage
TokenBag = list[str]
IntermediateValue = t.TypeVar("IntermediateValue")
Features = dict[str, int]
log = logging.getLogger(__name__)
class VanillaSA(BaseSA):
"""
A sentiment analyzer resembling the one implemented in structure the one implemented in the classroom, using the basic sentiment analyzer of NLTK.
"""
def __init__(self, *, extractor: t.Callable[[Input], tuple[str, IntermediateValue]], tokenizer: t.Callable[[str], TokenBag], categorizer: t.Callable[[IntermediateValue], Category]) -> None:
super().__init__()
self.model: nltk.sentiment.SentimentAnalyzer = nltk.sentiment.SentimentAnalyzer()
self.trained: bool = False
self.extractor: t.Callable[[Input], tuple[str, IntermediateValue]] = extractor
self.tokenizer: t.Callable[[str], TokenBag] = tokenizer
self.categorizer: t.Callable[[IntermediateValue], Category] = categorizer
def __repr__(self):
return f"<{self.__class__.__qualname__} {'trained' if self.trained else 'untrained'} tokenizer={self.extractor!r} categorizer={self.categorizer!r}>"
@staticmethod
def __data_to_tokenbag(data: tuple[TokenBag, Category]) -> TokenBag:
"""
Access the tokenbag of a data tuple.
"""
return data[0]
def __add_feature_unigrams(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> None:
"""
Register the `nltk.sentiment.util.extract_unigram_feats` feature extrator on the model.
"""
tokenbags = map(self.__data_to_tokenbag, dataset)
all_words = self.model.all_words(tokenbags, labeled=False)
unigrams = self.model.unigram_word_feats(words=all_words, min_freq=4)
self.model.add_feat_extractor(nltk.sentiment.util.extract_unigram_feats, unigrams=unigrams)
def _add_features(self, dataset: t.Iterator[tuple[TokenBag, Category]]):
"""
Register new feature extractors on the `.model`.
"""
self.__add_feature_unigrams(dataset)
def __extract_features(self, data: tuple[TokenBag, Category]) -> tuple[Features, Category]:
"""
Convert a (TokenBag, Category) tuple to a (Features, Category) tuple.
Does not use `SentimentAnalyzer.apply_features` due to unexpected behaviour when using iterators.
"""
count_passage("processed_features", 100)
return self.model.extract_features(data[0]), data[1]
def _train_from_dataset(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> None:
"""
Train the model with the given training set.
"""
if self.trained:
raise AlreadyTrainedError()
dataset_1, dataset_2 = itertools.tee(dataset, 2)
self._add_features(dataset_1)
del dataset_1
dataset_2 = map(self.__extract_features, dataset_2)
self.model.classifier = nltk.classify.NaiveBayesClassifier.train(dataset_2)
self.trained = True
def _evaluate_from_dataset(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> dict:
"""
Perform a model evaluation with the given test set.
"""
if not self.trained:
raise NotTrainedError()
dataset_1 = map(self.__extract_features, dataset)
# FIXME: This won't work with streams :(
return self.model.evaluate(list(dataset_1))
def _use_from_tokenbag(self, tokens: TokenBag) -> Category:
"""
Categorize the given token bag.
"""
if not self.trained:
raise NotTrainedError()
return self.model.classify(instance=tokens)
def _extract_data(self, inp: Input) -> tuple[TokenBag, Category]:
count_passage("processed_data", 100)
text, value = self.extractor(inp)
return self.tokenizer(text), self.categorizer(value)
def _extract_dataset(self, inp: t.Iterator[Input]) -> list[tuple[TokenBag, Category]]:
return map(self._extract_data, inp)
def train(self, training_set: t.Iterator[Input]) -> None:
dataset = self._extract_dataset(training_set)
self._train_from_dataset(dataset)
def evaluate(self, test_set: t.Iterator[Input]) -> dict:
dataset = self._extract_dataset(test_set)
return self._evaluate_from_dataset(dataset)
def use(self, text: Input) -> Category:
tokens = self.tokenizer(text)
return self._use_from_tokenbag(tokens)
__all__ = (
"VanillaSA",
)