2022-11-11 12:23:45 +00:00
|
|
|
#include <stdio.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <math.h>
|
2022-11-30 22:43:32 +00:00
|
|
|
#include <iostream>
|
2022-11-11 12:23:45 +00:00
|
|
|
|
|
|
|
/* Include polybench common header. */
|
2022-11-28 15:21:51 +00:00
|
|
|
#include "polybench.hu"
|
2022-11-11 12:23:45 +00:00
|
|
|
|
|
|
|
/* Include benchmark-specific header. */
|
|
|
|
/* Default data type is double, default size is 4000. */
|
2022-11-28 13:37:37 +00:00
|
|
|
#include "atax.hu"
|
2022-11-11 12:23:45 +00:00
|
|
|
|
2022-11-11 16:42:39 +00:00
|
|
|
// Workaround for the editor not finding M_PI
|
|
|
|
// It is exclusive to the GNU C compiler
|
|
|
|
// https://www.gnu.org/software/libc/manual/html_node/Mathematical-Constants.html
|
|
|
|
#ifndef M_PI
|
2022-11-28 14:26:10 +00:00
|
|
|
#define M_PI 3.141
|
2022-11-11 16:42:39 +00:00
|
|
|
#endif
|
|
|
|
|
2022-11-30 22:43:32 +00:00
|
|
|
// Default if CUDA_NTHREADS is not set
|
|
|
|
#ifndef CUDA_NTHREADS
|
|
|
|
#define CUDA_NTHREADS 128
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Enable syntax highlighting for the CUDA mode
|
|
|
|
// TODO: Remove this, as it will be set by .bench.sh
|
|
|
|
#define HPC_USE_CUDA
|
|
|
|
|
|
|
|
// Enable syntax highlighting for the stride mode
|
|
|
|
// TODO: Remove this, as it will be set by .bench.sh
|
|
|
|
#define HPC_USE_STRIDE
|
|
|
|
|
|
|
|
|
2022-11-28 14:43:05 +00:00
|
|
|
/**
|
|
|
|
* Initialize the arrays to be used in the computation:
|
|
|
|
*
|
2022-11-30 22:43:32 +00:00
|
|
|
* - `X` is filled with multiples of `M_PI`;
|
|
|
|
* - `Y` is zeroed;
|
2022-11-28 14:43:05 +00:00
|
|
|
* - `A` is filled with sample data.
|
|
|
|
*
|
|
|
|
* To be called on the CPU (uses the `__host__` qualifier).
|
|
|
|
*/
|
2022-11-30 22:43:32 +00:00
|
|
|
#ifndef HPC_USE_CUDA
|
2022-11-29 16:36:19 +00:00
|
|
|
__host__ static void init_array(DATA_TYPE** A, DATA_TYPE* X, DATA_TYPE* Y)
|
2022-11-11 12:23:45 +00:00
|
|
|
{
|
2022-11-29 16:22:26 +00:00
|
|
|
/* X = [ 3.14, 6.28, 9.42, ... ] */
|
2022-11-29 16:24:48 +00:00
|
|
|
for (unsigned int y = 0; y < NY; y++)
|
2022-11-29 13:23:24 +00:00
|
|
|
{
|
2022-11-29 16:22:26 +00:00
|
|
|
X[y] = y * M_PI;
|
2022-11-28 14:26:10 +00:00
|
|
|
}
|
|
|
|
|
2022-11-29 16:36:19 +00:00
|
|
|
/* Y = [ 0.00, 0.00, 0.00, ... ] */
|
|
|
|
for (unsigned int x = 0; x < NY; x++)
|
|
|
|
{
|
|
|
|
Y[x] = 0;
|
|
|
|
}
|
|
|
|
|
2022-11-29 16:22:26 +00:00
|
|
|
/*
|
|
|
|
* A = [
|
2022-11-29 16:26:09 +00:00
|
|
|
* [ 0, 0, 0, 0, ... ],
|
|
|
|
* [ 1 / NX, 2 / NX, 3 / NX, 4 / NX, ... ],
|
|
|
|
* [ 2 / NX, 4 / NX, 6 / NX, 8 / NX, ... ],
|
|
|
|
* [ 3 / NX, 6 / NX, 9 / NX, 12 / NX, ... ],
|
|
|
|
* ...
|
2022-11-29 16:22:26 +00:00
|
|
|
* ]
|
|
|
|
*/
|
2022-11-29 16:24:48 +00:00
|
|
|
for (unsigned int x = 0; x < NX; x++)
|
2022-11-29 13:23:24 +00:00
|
|
|
{
|
2022-11-29 16:24:48 +00:00
|
|
|
for (unsigned int y = 0; y < NY; y++)
|
2022-11-29 13:23:24 +00:00
|
|
|
{
|
2022-11-29 16:24:48 +00:00
|
|
|
A[x][y] = (DATA_TYPE)(x * (y + 1)) / NX;
|
2022-11-28 14:26:10 +00:00
|
|
|
}
|
|
|
|
}
|
2022-11-11 12:23:45 +00:00
|
|
|
}
|
2022-11-30 22:43:32 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Initialize the arrays to be used in the computation:
|
|
|
|
*
|
|
|
|
* - `X` is filled with multiples of `M_PI`;
|
|
|
|
* - `Y` is zeroed;
|
|
|
|
* - `A` is filled with sample data.
|
|
|
|
*
|
|
|
|
* It is called by the host, runs on the device, and calls the other init_arrays on the device.
|
|
|
|
*/
|
|
|
|
#ifdef HPC_USE_CUDA
|
|
|
|
__global__ static void init_array_cuda(DATA_TYPE** A, DATA_TYPE* X, DATA_TYPE* Y)
|
|
|
|
{
|
|
|
|
unsigned int threads = gridDim.x * blockDim.x;
|
|
|
|
|
|
|
|
init_array_cuda_x(X, threads);
|
|
|
|
init_array_cuda_y(Y, threads);
|
|
|
|
init_array_cuda_a(A, threads);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Initialize the `X` array.
|
|
|
|
*
|
|
|
|
* Runs on the device.
|
|
|
|
*/
|
|
|
|
#ifdef HPC_USE_CUDA
|
|
|
|
__device__ static void init_array_cuda_x(DATA_TYPE* X, unsigned int threads)
|
|
|
|
{
|
|
|
|
// Find how many iterations should be performed by each thread
|
|
|
|
unsigned int perThread = NY / threads;
|
|
|
|
|
|
|
|
// Find the index of the current thread, even if threads span multiple blocks
|
|
|
|
int blockThreadIdx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
// Have each thread perform the previously determined number of iterations
|
|
|
|
for(int stride = 0; stride < perThread; stride++) {
|
|
|
|
// Find the index of the current iteration
|
|
|
|
// This is equal to `y` of the init_array function
|
|
|
|
int iterationIdx = blockThreadIdx * stride;
|
|
|
|
|
|
|
|
// Prevent the thread from accessing unallocated memory
|
|
|
|
if(iterationIdx < NY) {
|
2022-11-11 12:23:45 +00:00
|
|
|
|
2022-11-30 22:43:32 +00:00
|
|
|
// Set the array element
|
|
|
|
X[iterationIdx] = iterationIdx * M_PI;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Initialize the `Y` array.
|
|
|
|
*
|
|
|
|
* Runs on the device.
|
|
|
|
*/
|
|
|
|
#ifdef HPC_USE_CUDA
|
|
|
|
__device__ static void init_array_cuda_y(DATA_TYPE* Y, unsigned int threads)
|
|
|
|
{
|
|
|
|
// Find how many iterations should be performed by each thread
|
|
|
|
unsigned int perThread = NX / threads;
|
|
|
|
|
|
|
|
// Find the index of the current thread, even if threads span multiple blocks
|
|
|
|
int blockThreadIdx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
// Have each thread perform the previously determined number of iterations
|
|
|
|
for(int stride = 0; stride < perThread; stride++) {
|
|
|
|
// Find the index of the current iteration
|
|
|
|
// This is equal to `y` of the init_array function
|
|
|
|
int iterationIdx = blockThreadIdx * stride;
|
|
|
|
|
|
|
|
// Prevent the thread from accessing unallocated memory
|
|
|
|
if(iterationIdx < NX) {
|
|
|
|
|
|
|
|
// Set the array element
|
|
|
|
Y[iterationIdx] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Initialize the `A` array.
|
|
|
|
*
|
|
|
|
* Runs on the device.
|
|
|
|
*/
|
|
|
|
#ifdef HPC_USE_CUDA
|
|
|
|
__device__ static void init_array_cuda_a(DATA_TYPE** A, unsigned int threads)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
#endif
|
2022-11-29 13:23:24 +00:00
|
|
|
|
2022-11-29 16:11:41 +00:00
|
|
|
/**
|
|
|
|
* Print the given array.
|
2022-11-28 14:43:05 +00:00
|
|
|
*
|
|
|
|
* Cannot be parallelized, as the elements of the array should be
|
|
|
|
*
|
|
|
|
* To be called on the CPU (uses the `__host__` qualifier).
|
|
|
|
*/
|
2022-11-29 16:22:26 +00:00
|
|
|
__host__ static void print_array(DATA_TYPE* Y)
|
2022-11-11 12:23:45 +00:00
|
|
|
{
|
2022-11-29 16:24:48 +00:00
|
|
|
for (unsigned int x = 0; x < NX; x++)
|
2022-11-29 13:23:24 +00:00
|
|
|
{
|
2022-11-29 16:22:26 +00:00
|
|
|
fprintf(stderr, DATA_PRINTF_MODIFIER, Y[x]);
|
2022-11-28 14:26:10 +00:00
|
|
|
}
|
|
|
|
fprintf(stderr, "\n");
|
2022-11-11 12:23:45 +00:00
|
|
|
}
|
|
|
|
|
2022-11-28 14:26:10 +00:00
|
|
|
|
2022-11-28 14:43:05 +00:00
|
|
|
/**
|
2022-11-30 00:32:15 +00:00
|
|
|
* Compute ATAX :
|
|
|
|
* - A is the input matrix
|
|
|
|
* - X is an input vector
|
|
|
|
* - Y is the result vector
|
|
|
|
*
|
|
|
|
* In particular:
|
|
|
|
* ```
|
|
|
|
* A * (A * X) = Y
|
|
|
|
* ```
|
|
|
|
* Wait, there's no transposition here?!?
|
2022-11-28 14:43:05 +00:00
|
|
|
*
|
|
|
|
* Parallelizing this is the goal of the assignment.
|
|
|
|
*
|
|
|
|
* Currently to be called on the CPU (uses the `__host__` qualifier), but we may probably want to change that soon.
|
|
|
|
*/
|
2022-11-29 16:22:26 +00:00
|
|
|
__host__ static void kernel_atax(DATA_TYPE** A, DATA_TYPE* X, DATA_TYPE* Y)
|
2022-11-28 14:43:05 +00:00
|
|
|
{
|
2022-11-29 16:29:17 +00:00
|
|
|
for (unsigned int x = 0; x < NX; x++)
|
2022-11-29 13:23:24 +00:00
|
|
|
{
|
2022-11-28 14:26:10 +00:00
|
|
|
DATA_TYPE tmp = 0;
|
|
|
|
|
2022-11-29 16:29:17 +00:00
|
|
|
for (unsigned int y = 0; y < NY; y++)
|
2022-11-29 13:23:24 +00:00
|
|
|
{
|
2022-11-29 16:29:17 +00:00
|
|
|
tmp += A[x][y] * X[y];
|
2022-11-28 14:26:10 +00:00
|
|
|
}
|
|
|
|
|
2022-11-29 16:29:17 +00:00
|
|
|
for (unsigned int y = 0; y < NY; y++)
|
2022-11-29 13:23:24 +00:00
|
|
|
{
|
2022-11-30 00:19:00 +00:00
|
|
|
Y[y] += A[x][y] * tmp;
|
2022-11-28 14:26:10 +00:00
|
|
|
}
|
|
|
|
}
|
2022-11-11 12:23:45 +00:00
|
|
|
}
|
|
|
|
|
2022-11-29 13:23:24 +00:00
|
|
|
|
2022-11-28 14:43:05 +00:00
|
|
|
/**
|
|
|
|
* The main function of the benchmark, which sets up tooling to measure the time spent computing `kernel_atax`.
|
|
|
|
*
|
|
|
|
* We should probably avoid editing this.
|
|
|
|
*/
|
2022-11-29 16:33:56 +00:00
|
|
|
__host__ int main(int argc, char** argv)
|
2022-11-11 12:23:45 +00:00
|
|
|
{
|
2022-11-30 22:43:32 +00:00
|
|
|
#ifndef HPC_USE_CUDA
|
2022-11-28 14:26:10 +00:00
|
|
|
|
2022-11-29 16:47:34 +00:00
|
|
|
// A[NX][NY]
|
|
|
|
DATA_TYPE** A = new DATA_TYPE*[NX] {};
|
|
|
|
for(unsigned int x = 0; x < NX; x++)
|
|
|
|
{
|
|
|
|
A[x] = new DATA_TYPE[NY] {};
|
|
|
|
}
|
2022-11-29 16:10:36 +00:00
|
|
|
|
2022-11-30 14:09:26 +00:00
|
|
|
// X[NY]
|
|
|
|
DATA_TYPE* X = new DATA_TYPE[NY] {};
|
|
|
|
|
|
|
|
// Y[NX]
|
|
|
|
DATA_TYPE* Y = new DATA_TYPE[NX] {};
|
2022-11-28 14:44:40 +00:00
|
|
|
|
2022-11-30 22:43:32 +00:00
|
|
|
#ifdef HPC_INCLUDE_INIT
|
2022-11-29 16:47:34 +00:00
|
|
|
polybench_start_instruments;
|
|
|
|
#endif
|
2022-11-28 14:44:40 +00:00
|
|
|
|
2022-11-30 14:09:26 +00:00
|
|
|
init_array(A, X, Y);
|
2022-11-28 14:26:10 +00:00
|
|
|
|
2022-11-30 22:43:32 +00:00
|
|
|
#ifndef HPC_INCLUDE_INIT
|
2022-11-29 16:47:34 +00:00
|
|
|
polybench_start_instruments;
|
|
|
|
#endif
|
2022-11-28 14:26:10 +00:00
|
|
|
|
2022-11-30 14:09:26 +00:00
|
|
|
kernel_atax(A, X, Y);
|
2022-11-28 14:26:10 +00:00
|
|
|
|
2022-11-29 16:47:34 +00:00
|
|
|
polybench_stop_instruments;
|
|
|
|
polybench_print_instruments;
|
|
|
|
|
2022-11-30 14:09:26 +00:00
|
|
|
polybench_prevent_dce(
|
|
|
|
print_array(Y)
|
|
|
|
);
|
2022-11-29 16:47:34 +00:00
|
|
|
|
|
|
|
#else
|
|
|
|
|
2022-11-30 22:43:32 +00:00
|
|
|
DATA_TYPE** A;
|
|
|
|
DATA_TYPE* X;
|
|
|
|
DATA_TYPE* Y;
|
|
|
|
|
|
|
|
if(cudaMalloc(&A, sizeof(DATA_TYPE) * NX * NY))
|
|
|
|
{
|
|
|
|
std::cerr << "Could not allocate A on the device\n";
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(cudaMalloc(&X, sizeof(DATA_TYPE) * NY))
|
|
|
|
{
|
|
|
|
std::cerr << "Could not allocate X on the device\n";
|
|
|
|
return 1;
|
|
|
|
}
|
2022-11-29 16:47:34 +00:00
|
|
|
|
2022-11-30 22:43:32 +00:00
|
|
|
if(cudaMalloc(&Y, sizeof(DATA_TYPE) * NX))
|
|
|
|
{
|
|
|
|
std::cerr << "Could not allocate Y on the device\n";
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef POLYBENCH_INCLUDE_INIT
|
|
|
|
polybench_start_instruments;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
init_array_cuda<<<1, 1>>>(A, X, Y);
|
|
|
|
|
|
|
|
#ifndef POLYBENCH_INCLUDE_INIT
|
|
|
|
polybench_start_instruments;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// kernel_atax_cuda<<<1, 1>>>();
|
|
|
|
|
|
|
|
polybench_stop_instruments;
|
|
|
|
polybench_print_instruments;
|
|
|
|
|
|
|
|
// Y = cudaMemcpy();
|
|
|
|
|
|
|
|
/*
|
|
|
|
polybench_prevent_dce(
|
|
|
|
print_array(Y)
|
|
|
|
);
|
|
|
|
*/
|
2022-11-29 16:47:34 +00:00
|
|
|
|
|
|
|
#endif
|
2022-11-28 14:26:10 +00:00
|
|
|
|
|
|
|
return 0;
|
2022-11-11 12:23:45 +00:00
|
|
|
}
|