1
Fork 0
mirror of https://github.com/Steffo99/appunti-magistrali.git synced 2024-11-22 10:44:17 +00:00
appunti-steffo/7 - Introduction to quantum information processing/2 - Gates semplici/gate quantistico universale.md
2024-07-05 19:22:13 +02:00

33 lines
1.1 KiB
Markdown

Un [[gate quantistico]] che permette di effettuare una rotazione su asse arbitrario.
Usando la [[formula di Eulero]], esso corrisponde a:
$$
\def \varX {{\color{coral} a}}
\def \varY {{\color{cornflowerblue} b}}
\def \varZ {{\color{yellowgreen} c}}
\def \varI {{\color{hotpink} i}}
\Huge
\mathbf{U}(\varX, \varY, \varZ) = \begin{bmatrix}
\cos \left( \frac{\varX}{2} \right) &
- e^{\varI \varZ} \sin \left( \frac{\varX}{2} \right) \\
e^{\varI \varY} \sin \left( \frac{\varX}{2} \right) &
e^{\varI \varY + \varI \varZ} \cos \left( \frac{\varX}{2} \right)
\end{bmatrix}
$$
Espanso, sarebbe:
$$
\def \varX {{\color{coral} a}}
\def \varY {{\color{cornflowerblue} b}}
\def \varZ {{\color{yellowgreen} c}}
\def \varI {{\color{hotpink} i}}
\mathbf{U}(\varX, \varY, \varZ) = \begin{bmatrix}
\cos \frac{\varX}{2} &
- (\cos \varZ + \varI \sin \varZ) \cdot \sin \frac{\varX}{2} \\
(\cos \varY + \varI \sin \varY) \cdot \sin \frac{\varX}{2} &
(cos (\varY + \varZ) + \varI \sin (\varY + \varZ)) \cdot \cos \frac{\varX}{2}
\end{bmatrix}
$$
> [!Note]
> Il parametro $\varX$ modifica il valore del [[qbit]], mentre i parametri $\varY$ e $\varZ$ ne modificano la fase!