1
Fork 0
mirror of https://github.com/Steffo99/appunti-magistrali.git synced 2024-11-28 21:04:19 +00:00
appunti-steffo/7 - Introduction to quantum information processing/5 - Cose strane/costruire un Hardy state.md

77 lines
2.2 KiB
Markdown

Per creare un [[Hardy state]] partendo da $\ket{00}$, è necessario:
==TODO: Formattare con sintassi matematica decente.==
1. Separare i [[qbit]] nell'equazione dello stato:
$$
\def \noteA {{\color{grey} a}}
\def \noteB {{\color{grey} b}}
\displaylines{
\ket{00} = \ket{0}_\noteA \otimes \ket{0}_\noteB \\
\ket{01} = \ket{0}_\noteA \otimes \ket{1}_\noteB \\
\ket{10} = \ket{1}_\noteA \otimes \ket{0}_\noteB \\
\ket{11} = \ket{1}_\noteA \otimes \ket{1}_\noteB
}
$$
2. Raccogliere i bit dello stato:
$$
\frac{1}{\sqrt{12}}
\cdot
{\LARGE(\ }
(\ 3 \ket{0}_\noteA + 1 \ket{1}_\noteA\ ) \otimes \ket{0}_\noteB
+
(\ 1 \ket{0}_\noteA - 1 \ket{1}_\noteA\ ) \otimes \ket{1}_\noteB
{\ \LARGE)}
$$
3. Determinare la somma dei quadrati dei coefficienti:
$$
\large
\begin{matrix}
\ket{0}_\noteB & : & \frac{\sqrt{3^2 + 1^2}}{\sqrt{12}} &=& \frac{\sqrt{10}}{\sqrt{12}} \\
\ket{1}_\noteB & : & \frac{\sqrt{1^2 + 1^2}}{\sqrt{12}} &=& \frac{\sqrt{2}}{\sqrt{12}}
\end{matrix}
$$
4. Determinare i parametri del [[gate quantistico universale]] per il secondo qbit $\mathbf{U}_\noteB (\theta, \phi, \lambda)$:
$$
\large
\displaylines{
\begin{cases}
\cos \frac{\phi}{2} &=& \frac{\sqrt{10}}{\sqrt{12}} \\
e^{i \theta} \sin \frac{\phi}{2} &=& \frac{\sqrt{2}}{\sqrt{12}} \\
\end{cases}
\\\\\updownarrow\\\\
\begin{cases}
\phi &=& 2 \arccos \frac{\sqrt{10}}{\sqrt{12}} \\
\theta &=& 0 \\
\lambda &=& 0
\end{cases}
}
$$
5. Determinare la somma dei quadrati dei coefficienti quando il bit $\noteB$ è $\ket{0}$:
$$
\large
\begin{matrix}
\ket{0}_\noteA \otimes \ket{0}_\noteB & : & \frac{3}{\sqrt{12}} \\
\ket{1}_\noteA \otimes \ket{0}_\noteB & : & \frac{1}{\sqrt{12}}
\end{matrix}
$$
6. Determinare i parametri del [[gate quantistico universale]] per il primo qbit $\mathbf{U}_\noteA$:
$$
\large
\displaylines{
\begin{cases}
\cos \frac{\phi}{2} &=& \frac{3}{\sqrt{12}} \\
e^{i \theta} \sin \frac{\phi}{2} &=& \frac{1}{\sqrt{12}} \\
\end{cases}
\\\\\updownarrow\\\\
\begin{cases}
\phi &=& 2 \arccos \frac{3}{\sqrt{10}} \\
\theta &=& 0 \\
\lambda &=& 0
\end{cases}
}
$$
==TODO: Non lo so, mi sono perso.==