mirror of
https://github.com/Steffo99/appunti-magistrali.git
synced 2024-11-24 19:24:19 +00:00
77 lines
2.2 KiB
Markdown
77 lines
2.2 KiB
Markdown
Per creare un [[Hardy state]] partendo da $\ket{00}$, è necessario:
|
|
|
|
==TODO: Formattare con sintassi matematica decente.==
|
|
|
|
1. Separare i [[qbit]] nell'equazione dello stato:
|
|
$$
|
|
\def \noteA {{\color{grey} a}}
|
|
\def \noteB {{\color{grey} b}}
|
|
|
|
\displaylines{
|
|
\ket{00} = \ket{0}_\noteA \otimes \ket{0}_\noteB \\
|
|
\ket{01} = \ket{0}_\noteA \otimes \ket{1}_\noteB \\
|
|
\ket{10} = \ket{1}_\noteA \otimes \ket{0}_\noteB \\
|
|
\ket{11} = \ket{1}_\noteA \otimes \ket{1}_\noteB
|
|
}
|
|
$$
|
|
2. Raccogliere i bit dello stato:
|
|
$$
|
|
\frac{1}{\sqrt{12}}
|
|
\cdot
|
|
{\LARGE(\ }
|
|
(\ 3 \ket{0}_\noteA + 1 \ket{1}_\noteA\ ) \otimes \ket{0}_\noteB
|
|
+
|
|
(\ 1 \ket{0}_\noteA - 1 \ket{1}_\noteA\ ) \otimes \ket{1}_\noteB
|
|
{\ \LARGE)}
|
|
$$
|
|
3. Determinare la somma dei quadrati dei coefficienti:
|
|
$$
|
|
\large
|
|
\begin{matrix}
|
|
\ket{0}_\noteB & : & \frac{\sqrt{3^2 + 1^2}}{\sqrt{12}} &=& \frac{\sqrt{10}}{\sqrt{12}} \\
|
|
\ket{1}_\noteB & : & \frac{\sqrt{1^2 + 1^2}}{\sqrt{12}} &=& \frac{\sqrt{2}}{\sqrt{12}}
|
|
\end{matrix}
|
|
$$
|
|
4. Determinare i parametri del [[gate quantistico universale]] per il secondo qbit $\mathbf{U}_\noteB (\theta, \phi, \lambda)$:
|
|
$$
|
|
\large
|
|
\displaylines{
|
|
\begin{cases}
|
|
\cos \frac{\phi}{2} &=& \frac{\sqrt{10}}{\sqrt{12}} \\
|
|
e^{i \theta} \sin \frac{\phi}{2} &=& \frac{\sqrt{2}}{\sqrt{12}} \\
|
|
\end{cases}
|
|
\\\\\updownarrow\\\\
|
|
\begin{cases}
|
|
\phi &=& 2 \arccos \frac{\sqrt{10}}{\sqrt{12}} \\
|
|
\theta &=& 0 \\
|
|
\lambda &=& 0
|
|
\end{cases}
|
|
}
|
|
$$
|
|
5. Determinare la somma dei quadrati dei coefficienti quando il bit $\noteB$ è $\ket{0}$:
|
|
|
|
$$
|
|
\large
|
|
\begin{matrix}
|
|
\ket{0}_\noteA \otimes \ket{0}_\noteB & : & \frac{3}{\sqrt{12}} \\
|
|
\ket{1}_\noteA \otimes \ket{0}_\noteB & : & \frac{1}{\sqrt{12}}
|
|
\end{matrix}
|
|
$$
|
|
6. Determinare i parametri del [[gate quantistico universale]] per il primo qbit $\mathbf{U}_\noteA$:
|
|
$$
|
|
\large
|
|
\displaylines{
|
|
\begin{cases}
|
|
\cos \frac{\phi}{2} &=& \frac{3}{\sqrt{12}} \\
|
|
e^{i \theta} \sin \frac{\phi}{2} &=& \frac{1}{\sqrt{12}} \\
|
|
\end{cases}
|
|
\\\\\updownarrow\\\\
|
|
\begin{cases}
|
|
\phi &=& 2 \arccos \frac{3}{\sqrt{10}} \\
|
|
\theta &=& 0 \\
|
|
\lambda &=& 0
|
|
\end{cases}
|
|
}
|
|
$$
|
|
|
|
==TODO: Non lo so, mi sono perso.==
|