1
Fork 0
mirror of https://github.com/Steffo99/unimore-bda-6.git synced 2024-11-25 09:14:19 +00:00
bda-6-steffo/unimore_bda_6/__main__.py

135 lines
6.5 KiB
Python
Raw Normal View History

import logging
2023-02-08 18:46:05 +00:00
import pymongo.errors
import gc
2023-02-10 03:07:34 +00:00
from .log import install_general_log_handlers
2023-02-08 18:46:05 +00:00
2023-02-10 03:07:34 +00:00
install_general_log_handlers()
2023-02-14 01:25:38 +00:00
from .config import config, TARGET_RUNS, MAXIMUM_RUNS
2023-02-08 18:46:05 +00:00
from .database import mongo_client_from_config, reviews_collection, sample_reviews_polar, sample_reviews_varied
2023-02-12 04:11:58 +00:00
from .analysis import NLTKSentimentAnalyzer, TensorflowCategorySentimentAnalyzer, TensorflowPolarSentimentAnalyzer, ThreeCheat
2023-02-14 01:25:38 +00:00
from .analysis.base import TrainingFailedError, EvaluationResults
2023-02-11 03:32:17 +00:00
from .tokenizer import PlainTokenizer, LowercaseTokenizer, NLTKWordTokenizer, PottsTokenizer, PottsTokenizerWithNegation, HuggingBertTokenizer
2023-02-08 18:46:05 +00:00
from .gathering import Caches
2023-02-01 03:20:09 +00:00
log = logging.getLogger(__name__)
2023-02-01 01:33:42 +00:00
def main():
2023-02-08 18:46:05 +00:00
log.info("Started unimore-bda-6 in %s mode!", "DEBUG" if __debug__ else "PRODUCTION")
log.debug("Validating configuration...")
config.proxies.resolve()
log.debug("Ensuring there are no leftover caches...")
Caches.ensure_clean()
with open("./data/logs/results.tsv", "w") as file:
file.write("function\tanalyzer\ttokenizer\trun no\tmean absolute error\tmean squared error\tperfects\trecall 1\trecall 2\trecall 3\trecall 4\trecall 5\tprecision 1\tprecision 2\tprecision 3\tprecision 4\tprecision 5\n")
with mongo_client_from_config() as db:
try:
db.admin.command("ping")
except pymongo.errors.ServerSelectionTimeoutError:
log.fatal("MongoDB database is not available, exiting...")
exit(1)
for sample_func in [
sample_reviews_polar,
sample_reviews_varied,
2023-02-12 04:11:58 +00:00
]:
2023-02-08 18:46:05 +00:00
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}")
slog.debug("Selected sample_func: %s", sample_func.__name__)
2023-02-10 02:30:41 +00:00
for SentimentAnalyzer in [
ThreeCheat,
NLTKSentimentAnalyzer,
TensorflowPolarSentimentAnalyzer,
TensorflowCategorySentimentAnalyzer,
]:
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}")
slog.debug("Selected SentimentAnalyzer: %s", SentimentAnalyzer.__name__)
2023-02-18 02:18:34 +00:00
for Tokenizer in [
PlainTokenizer,
LowercaseTokenizer,
NLTKWordTokenizer,
PottsTokenizer,
PottsTokenizerWithNegation,
HuggingBertTokenizer,
]:
2023-02-10 02:30:41 +00:00
log.debug("Running garbage collection...")
garbage_count = gc.collect()
log.debug("Collected %d pieces of garbage!", garbage_count)
2023-02-08 18:46:05 +00:00
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
slog.debug("Selected Tokenizer: %s", Tokenizer.__name__)
2023-02-10 02:32:31 +00:00
runs = 0
successful_runs = 0
cumulative_evaluation_results = EvaluationResults()
2023-02-08 18:46:05 +00:00
while True:
2023-02-08 18:46:05 +00:00
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
2023-02-10 02:32:31 +00:00
if successful_runs >= TARGET_RUNS.__wrapped__:
slog.info("Reached target of %d runs, moving on...", TARGET_RUNS.__wrapped__)
break
2023-02-14 01:25:38 +00:00
if runs >= MAXIMUM_RUNS.__wrapped__:
slog.fatal("Exceeded %d runs, giving up and exiting...", MAXIMUM_RUNS.__wrapped__)
break
2023-02-14 01:25:38 +00:00
runs += 1
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}.{runs}")
slog.debug("Run #%d", runs)
2023-02-10 05:21:50 +00:00
2023-02-08 18:46:05 +00:00
try:
slog.debug("Instantiating %s with %s...", SentimentAnalyzer.__name__, Tokenizer.__name__)
sa = SentimentAnalyzer(tokenizer=Tokenizer())
except TypeError:
slog.warning("%s is not supported by %s, skipping run...", SentimentAnalyzer.__name__, Tokenizer.__name__)
2023-02-08 18:46:05 +00:00
break
with mongo_client_from_config() as db:
reviews = reviews_collection(db)
datasets_cm = Caches.from_database_samples(collection=reviews, sample_func=sample_func)
datasets = datasets_cm.__enter__()
try:
try:
slog.info("Training sentiment analyzer: %s", sa)
sa.train(training_dataset_func=datasets.training, validation_dataset_func=datasets.validation)
except TrainingFailedError:
slog.error("Training failed, trying again with a different dataset...")
file.write(f"{sample_func.__name__}\t{SentimentAnalyzer.__name__}\t{Tokenizer.__name__}\t{runs}\t\t\t\t\t\t\t\t\t\t\t\t\t\n")
file.flush()
continue
else:
slog.info("Training succeeded!")
slog.info("Evaluating sentiment analyzer: %s", sa)
evaluation_results = sa.evaluate(evaluation_dataset_func=datasets.evaluation)
slog.info("Evaluation results: %s", evaluation_results)
file.write(f"{sample_func.__name__}\t{SentimentAnalyzer.__name__}\t{Tokenizer.__name__}\t{runs}\t{evaluation_results.mean_absolute_error()}\t{evaluation_results.mean_squared_error()}\t{evaluation_results.perfect_count()}\t{evaluation_results.recall(1.0)}\t{evaluation_results.recall(2.0)}\t{evaluation_results.recall(3.0)}\t{evaluation_results.recall(4.0)}\t{evaluation_results.recall(5.0)}\t{evaluation_results.precision(1.0)}\t{evaluation_results.precision(2.0)}\t{evaluation_results.precision(3.0)}\t{evaluation_results.precision(4.0)}\t{evaluation_results.precision(5.0)}\n")
file.flush()
successful_runs += 1
cumulative_evaluation_results += evaluation_results
finally:
datasets_cm.__exit__(None, None, None)
slog.info("Cumulative evaluation results: %s", cumulative_evaluation_results)
2023-02-14 01:25:38 +00:00
2023-02-01 01:33:42 +00:00
if __name__ == "__main__":
main()