1
Fork 0
mirror of https://github.com/Steffo99/unimore-hpc-assignments.git synced 2024-11-23 00:24:23 +00:00
hpc-2022-g3/atax/atax.cu

501 lines
13 KiB
Text
Raw Normal View History

2022-11-11 12:23:45 +00:00
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include <iostream>
2022-12-01 23:15:33 +00:00
#include <string>
2022-11-11 12:23:45 +00:00
/* Include polybench common header. */
#include "polybench.hu"
2022-11-11 12:23:45 +00:00
/* Include benchmark-specific header. */
/* Default data type is double, default size is 4000. */
2022-11-28 13:37:37 +00:00
#include "atax.hu"
2022-11-11 12:23:45 +00:00
// Workaround for the editor not finding M_PI
// It is exclusive to the GNU C compiler
// https://www.gnu.org/software/libc/manual/html_node/Mathematical-Constants.html
#ifndef M_PI
#define M_PI 3.141
#endif
// Default if CUDA_NTHREADS is not set
#ifndef CUDA_NTHREADS
#define CUDA_NTHREADS 128
#endif
2022-12-01 23:15:33 +00:00
/**
* Given a `x` and a `y`, compute the relative index of the element in the `A` matrix.
*/
__host__ __device__ inline static unsigned int a_index(unsigned int x, unsigned int y) {
return x * NY + y;
}
2022-12-01 23:15:33 +00:00
/**
* Log a debug message.
*/
__host__ inline static void print_debug(std::string txt) {
#ifdef HPC_DEBUG
std::cerr << txt << std::endl;
#endif
}
/**
* Log an error message.
*/
#ifdef HPC_USE_CUDA
__host__ inline static void print_cudaError(cudaError_t err, std::string txt) {
#ifdef HPC_DEBUG
std::cerr << txt;
fprintf( stderr, ": error in file '%s' in line %i: %s.\n", __FILE__, __LINE__, cudaGetErrorString(err) );
#endif
}
#endif
2022-12-01 00:12:07 +00:00
/**
* Initialize the arrays to be used in the computation:
*
* - `X` is filled with multiples of `M_PI`;
* - `Y` is zeroed;
* - `A` is filled with sample data.
*
* To be called on the CPU (uses the `__host__` qualifier).
*/
#ifndef HPC_USE_CUDA
2022-12-01 23:15:33 +00:00
__host__ static void init_array(DATA_TYPE* A, DATA_TYPE* X, DATA_TYPE* Y)
2022-11-11 12:23:45 +00:00
{
for (unsigned int y = 0; y < NY; y++)
2022-11-29 13:23:24 +00:00
{
2022-11-29 16:22:26 +00:00
X[y] = y * M_PI;
}
2022-12-06 13:42:50 +00:00
for (unsigned int x = 0; x < NX; x++)
{
Y[x] = 0;
}
for (unsigned int x = 0; x < NX; x++)
2022-11-29 13:23:24 +00:00
{
for (unsigned int y = 0; y < NY; y++)
2022-11-29 13:23:24 +00:00
{
2022-12-01 23:15:33 +00:00
A[a_index(x, y)] = (DATA_TYPE)(x * (y + 1)) / NX;
}
}
2022-11-11 12:23:45 +00:00
}
#endif
/**
* Initialize the `X` array.
*
* Runs on the device.
*/
#ifdef HPC_USE_CUDA
__device__ static void init_array_cuda_x(DATA_TYPE* X, unsigned int threads)
{
// Find how many iterations should be performed by each thread
2022-12-01 23:15:33 +00:00
unsigned int perThread = NY / threads + 1;
// Find the index of the current thread, even if threads span multiple blocks
int blockThreadIdx = blockIdx.x * blockDim.x + threadIdx.x;
// Have each thread perform the previously determined number of iterations
2022-12-01 23:15:33 +00:00
for(int stride = 0; stride < perThread; stride++)
{
// Find the index of the current iteration
// This is equal to `y` of the init_array function
2022-12-01 23:15:33 +00:00
unsigned int iterationIdx = threads * stride + blockThreadIdx;
// Prevent the thread from accessing unallocated memory
2022-12-01 23:15:33 +00:00
if(iterationIdx < NY)
{
// Set the array element
X[iterationIdx] = iterationIdx * M_PI;
}
}
}
#endif
/**
* Initialize the `Y` array.
*
* Runs on the device.
*/
#ifdef HPC_USE_CUDA
__device__ static void init_array_cuda_y(DATA_TYPE* Y, unsigned int threads)
{
// Find how many iterations should be performed by each thread
2022-12-01 23:15:33 +00:00
unsigned int perThread = NX / threads + 1;
// Find the index of the current thread, even if threads span multiple blocks
int blockThreadIdx = blockIdx.x * blockDim.x + threadIdx.x;
// Have each thread perform the previously determined number of iterations
2022-12-01 23:15:33 +00:00
for(int stride = 0; stride < perThread; stride++)
{
// Find the index of the current iteration
// This is equal to `y` of the init_array function
2022-12-01 23:15:33 +00:00
unsigned int iterationIdx = threads * stride + blockThreadIdx;
// Prevent the thread from accessing unallocated memory
2022-12-01 23:15:33 +00:00
if(iterationIdx < NX)
{
// Set the array element
Y[iterationIdx] = 0;
}
}
}
#endif
/**
* Initialize the `A` array.
*
* Runs on the device.
*/
#ifdef HPC_USE_CUDA
2022-12-01 00:12:07 +00:00
__device__ static void init_array_cuda_a(DATA_TYPE* A, unsigned int threads)
{
2022-12-01 00:12:07 +00:00
// Find how many elements should be written in total
unsigned int elements = NX * NY;
2022-12-01 00:12:07 +00:00
// Find how many iterations should be performed by each thread
2022-12-01 23:15:33 +00:00
unsigned int perThread = elements / threads + 1;
2022-12-01 00:12:07 +00:00
// Find the index of the current thread, even if threads span multiple blocks
int blockThreadIdx = blockIdx.x * blockDim.x + threadIdx.x;
2022-12-01 23:15:33 +00:00
// Have each thread perform the previously determined number of iterations
for(int stride = 0; stride < perThread; stride++)
{
// Find the index of the current iteration
// This is equal to `y` of the init_array function
unsigned int iterationIdx = threads * stride + blockThreadIdx;
// Determine current x and y
unsigned int y = iterationIdx % NY;
unsigned int x = iterationIdx / NY;
// Prevent the thread from accessing unallocated memory
if(iterationIdx < elements)
{
// Set the array element
A[iterationIdx] = (DATA_TYPE)(x * (y + 1)) / NX;
}
}
2022-12-01 00:12:07 +00:00
}
#endif
/**
* Initialize the arrays to be used in the computation:
*
* - `X` is filled with multiples of `M_PI`;
* - `Y` is zeroed;
* - `A` is filled with sample data.
*
* Beware that `A` here is a simple array, it is not a matrix, so elements are accessed via [y * NX + x] (I think?).
*
* It is called by the host, runs on the device, and calls the other init_arrays on the device.
*/
#ifdef HPC_USE_CUDA
__global__ static void init_array_cuda(DATA_TYPE* A, DATA_TYPE* X, DATA_TYPE* Y)
{
unsigned int threads = gridDim.x * blockDim.x;
init_array_cuda_x(X, threads);
init_array_cuda_y(Y, threads);
init_array_cuda_a(A, threads);
}
#endif
2022-11-29 13:23:24 +00:00
2022-11-29 16:11:41 +00:00
/**
* Print the given array.
*
* Cannot be parallelized, as the elements of the array should be
*
* To be called on the CPU (uses the `__host__` qualifier).
*/
#ifdef HPC_DEBUG
2022-12-01 23:15:33 +00:00
__host__ static void print_array(DATA_TYPE* Z, unsigned int size)
2022-11-11 12:23:45 +00:00
{
2022-12-01 23:15:33 +00:00
for (unsigned int z = 0; z < size; z++)
2022-11-29 13:23:24 +00:00
{
2022-12-01 23:15:33 +00:00
fprintf(stderr, DATA_PRINTF_MODIFIER, Z[z]);
}
fprintf(stderr, "\n");
2022-11-11 12:23:45 +00:00
}
#endif
2022-11-11 12:23:45 +00:00
/**
* Compute ATAX :
* - A is the input matrix
* - X is an input vector
* - Y is the result vector
*
* In particular:
* ```
* A * (A * X) = Y
* ```
* Wait, there's no transposition here?!?
*
* Parallelizing this is the goal of the assignment.
*
2022-12-01 23:15:33 +00:00
* To be called on the CPU (uses the `__host__` qualifier).
*/
2022-12-01 23:15:33 +00:00
#ifndef HPC_USE_CUDA
__host__ static void kernel_atax(DATA_TYPE* A, DATA_TYPE* X, DATA_TYPE* Y)
{
2022-12-01 23:15:33 +00:00
for (unsigned int x = 0; x < NY; x++)
2022-11-29 13:23:24 +00:00
{
DATA_TYPE tmp = 0;
2022-12-01 23:15:33 +00:00
for (unsigned int y = 0; y < NX; y++)
2022-11-29 13:23:24 +00:00
{
2022-12-01 23:15:33 +00:00
tmp += A[a_index(x, y)] * X[y];
}
2022-12-01 23:15:33 +00:00
for (unsigned int y = 0; y < NX; y++)
2022-11-29 13:23:24 +00:00
{
2022-12-01 23:15:33 +00:00
Y[x] += A[a_index(x, y)] * tmp;
}
}
2022-11-11 12:23:45 +00:00
}
2022-12-01 23:15:33 +00:00
#endif
/**
* Compute ATAX :
* - A is the input matrix
* - X is an input vector
* - Y is the result vector
*
* In particular:
* ```
* A * (A * X) = Y
* ```
* Wait, there's no transposition here?!?
*
* Parallelizing this is the goal of the assignment.
*
* To be called on the device as a kernel (uses the `__global__` qualifier).
*/
#ifdef HPC_USE_CUDA
__global__ static void kernel_atax_cuda(DATA_TYPE* A, DATA_TYPE* X, DATA_TYPE* Y)
{
// Find out how many threads there are
unsigned int threads = gridDim.x * blockDim.x;
// Find how many iterations should be performed by each thread
unsigned int perThread = NX / threads + 1;
// Find the index of the current thread, even if threads span multiple blocks
unsigned int blockThreadIdx = blockIdx.x * blockDim.x + threadIdx.x;
// Have each thread perform the previously determined number of iterations
for(int stride = 0; stride < perThread; stride++)
{
2022-12-01 23:50:44 +00:00
// Iterate over x; y is not parallelized
2022-12-01 23:15:33 +00:00
unsigned int x = threads * stride + blockThreadIdx;
2022-12-01 23:50:44 +00:00
// Prevent the thread from accessing unallocated memory
2022-12-01 23:15:33 +00:00
if(x < NX)
{
2022-12-01 23:50:44 +00:00
// The same tmp as earlier
2022-12-01 23:15:33 +00:00
DATA_TYPE tmp = 0;
for (unsigned int y = 0; y < NX; y++)
{
tmp += A[a_index(x, y)] * X[y];
}
for (unsigned int y = 0; y < NX; y++)
{
2022-12-01 23:50:44 +00:00
// THIS DOES NOT WORK ON THE NANO, AS IT IS TOO OLD TO SUPPORT ATOMIC ADDITION WITH DOUBLES!
// If you want to use the Nano, swap this for something else, or change atax.hu to use float instead of double
2022-12-01 23:15:33 +00:00
atomicAdd(&Y[x], A[a_index(x, y)] * tmp);
}
}
}
}
#endif
2022-11-11 12:23:45 +00:00
2022-11-29 13:23:24 +00:00
/**
* The main function of the benchmark, which sets up tooling to measure the time spent computing `kernel_atax`.
*
* We should probably avoid editing this.
*/
2022-11-29 16:33:56 +00:00
__host__ int main(int argc, char** argv)
2022-11-11 12:23:45 +00:00
{
2022-12-01 23:15:33 +00:00
print_debug("[Main] Starting...");
std::cerr << "[Main] NX is: " << NX << std::endl;
std::cerr << "[Main] NY is: " << NY << std::endl;
2022-12-01 00:12:07 +00:00
#ifndef HPC_USE_CUDA
2022-12-01 23:15:33 +00:00
print_debug("[Mode] Host-only");
2022-12-01 00:12:07 +00:00
2022-12-01 23:15:33 +00:00
print_debug("[Pointers] Allocating...");
2022-11-29 16:10:36 +00:00
2022-12-01 23:15:33 +00:00
DATA_TYPE* A = new DATA_TYPE[NX * NY];
DATA_TYPE* X = new DATA_TYPE[NY];
volatile DATA_TYPE* Y = new DATA_TYPE[NX];
2022-11-30 14:09:26 +00:00
2022-12-01 23:15:33 +00:00
print_debug("[Pointers] Allocated!");
2022-12-01 00:12:07 +00:00
#ifdef HPC_INCLUDE_INIT
2022-12-01 23:15:33 +00:00
print_debug("[Benchmark] Starting...");
polybench_start_instruments;
#endif
2022-12-01 23:15:33 +00:00
print_debug("[Init] Initializing...");
init_array(A, X, (double*) Y);
2022-12-01 23:15:33 +00:00
print_debug("[Init] Initialized!");
#ifndef HPC_INCLUDE_INIT
2022-12-01 23:15:33 +00:00
print_debug("[Benchmark] Starting...");
polybench_start_instruments;
#endif
2022-12-01 23:15:33 +00:00
print_debug("[Kernel] Running...");
kernel_atax(A, X, (double*) Y);
2022-12-01 23:15:33 +00:00
print_debug("[Kernel] Completed!");
2022-12-01 23:15:33 +00:00
print_debug("[Benchmark] Stopping...");
polybench_stop_instruments;
polybench_print_instruments;
2022-12-01 23:15:33 +00:00
print_debug("[Benchmark] Complete!");
#ifdef HPC_DEBUG
print_debug("[Debug] Displaying A:");
print_array(A, NX * NY);
print_debug("[Debug] Displaying X:");
print_array(X, NY);
print_debug("[Debug] Displaying Y:");
print_array(Y, NX);
#endif
#else
2022-12-01 00:12:07 +00:00
2022-12-01 23:15:33 +00:00
print_debug("[Mode] Host-and-device, CUDA");
2022-12-01 23:15:33 +00:00
print_debug("[Pointers] Allocating...");
2022-12-01 00:12:07 +00:00
DATA_TYPE* A;
DATA_TYPE* X;
DATA_TYPE* Y;
2022-12-01 23:50:44 +00:00
#ifdef HPC_DEBUG
DATA_TYPE* host_A = new DATA_TYPE[NX * NY];
DATA_TYPE* host_X = new DATA_TYPE[NY];
#endif
volatile DATA_TYPE* host_Y = new DATA_TYPE[NX];
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Allocating A...");
if(cudaError_t err = cudaMalloc((void**)&A, sizeof(DATA_TYPE) * NX * NY))
{
2022-12-01 23:15:33 +00:00
print_cudaError(err, "[CUDA] Could not allocate A!");
return 1;
}
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Allocated A!");
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Allocating X...");
if(cudaError_t err = cudaMalloc((void**)&X, sizeof(DATA_TYPE) * NY))
{
2022-12-01 23:15:33 +00:00
print_cudaError(err, "[CUDA] Could not allocate X!");
return 1;
}
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Allocated X!");
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Allocating Y...");
if(cudaError_t err = cudaMalloc((void**)&Y, sizeof(DATA_TYPE) * NX))
{
2022-12-01 23:15:33 +00:00
print_cudaError(err, "[CUDA] Could not allocate Y!");
return 1;
}
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Allocated Y!");
#ifdef HPC_INCLUDE_INIT
2022-12-01 23:15:33 +00:00
print_debug("[Benchmark] Starting...");
polybench_start_instruments;
#endif
2022-12-01 23:15:33 +00:00
print_debug("[Init] Initializing...");
2022-12-01 23:50:44 +00:00
init_array_cuda<<<32, 32>>>((DATA_TYPE*) A, (DATA_TYPE*) X, (DATA_TYPE*) Y);
2022-12-01 23:15:33 +00:00
if(cudaError_t err = cudaGetLastError())
2022-12-01 00:12:07 +00:00
{
2022-12-01 23:15:33 +00:00
print_cudaError(err, "[Init] Failed to execute kernel!");
2022-12-01 00:12:07 +00:00
return 1;
}
2022-12-01 23:15:33 +00:00
print_debug("[Init] Complete!");
#ifndef HPC_INCLUDE_INIT
2022-12-01 23:15:33 +00:00
print_debug("[Benchmark] Starting...");
polybench_start_instruments;
#endif
2022-12-01 23:15:33 +00:00
print_debug("[Kernel] Running...");
2022-12-01 23:50:44 +00:00
kernel_atax_cuda<<<32, 32>>>((DATA_TYPE*) A, (DATA_TYPE*) X, (DATA_TYPE*) Y);
2022-12-01 23:15:33 +00:00
print_debug("[Kernel] Complete!");
2022-12-01 23:50:44 +00:00
#ifdef HPC_DEBUG
print_debug("[CUDA] Copying A back...");
if(cudaError_t err = cudaMemcpy(host_A, A, sizeof(DATA_TYPE) * NX * NY, cudaMemcpyDeviceToHost)) {
print_cudaError(err, "[CUDA] Could copy A back!");
return 1;
};
print_debug("[CUDA] Copied A back!");
print_debug("[CUDA] Copying X back...");
if(cudaError_t err = cudaMemcpy(host_X, X, sizeof(DATA_TYPE) * NY, cudaMemcpyDeviceToHost)) {
print_cudaError(err, "[CUDA] Could copy X back!");
return 1;
};
print_debug("[CUDA] Copied X back!");
#endif
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Copying Y back...");
if(cudaError_t err = cudaMemcpy((void*) host_Y, Y, sizeof(DATA_TYPE) * NX, cudaMemcpyDeviceToHost)) {
2022-12-01 23:15:33 +00:00
print_cudaError(err, "[CUDA] Could copy Y back!");
return 1;
};
print_debug("[CUDA] Copied Y back!");
2022-12-01 23:15:33 +00:00
print_debug("[Benchmark] Stopping...");
polybench_stop_instruments;
polybench_print_instruments;
2022-12-01 23:15:33 +00:00
print_debug("[Benchmark] Complete!");
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Freeing A...");
if(cudaError_t err = cudaFree(A)) {
print_cudaError(err, "[CUDA] Could not free A!");
2022-12-01 15:22:43 +00:00
return 1;
}
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Freed A!");
2022-12-01 15:22:43 +00:00
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Freeing X...");
if(cudaError_t err = cudaFree(X)) {
print_cudaError(err, "[CUDA] Could not free X!");
2022-12-01 15:22:43 +00:00
return 1;
}
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Freed X!");
2022-12-01 15:22:43 +00:00
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Freeing Y...");
if(cudaError_t err = cudaFree(Y)) {
print_cudaError(err, "[CUDA] Could not free Y!");
2022-12-01 15:22:43 +00:00
return 1;
}
2022-12-01 23:15:33 +00:00
print_debug("[CUDA] Freed Y!");
#ifdef HPC_DEBUG
print_debug("[Debug] Displaying A:");
print_array(host_A, NX * NY);
print_debug("[Debug] Displaying X:");
print_array(host_X, NY);
print_debug("[Debug] Displaying Y:");
print_array((double*) host_Y, NX);
2022-12-01 23:15:33 +00:00
#endif
#endif
return 0;
2022-11-11 12:23:45 +00:00
}