1
Fork 0
mirror of https://github.com/Steffo99/appunti-magistrali.git synced 2024-11-28 21:04:19 +00:00
appunti-steffo/7 - Introduction to quantum information processing/2 - Gates semplici/gate quantistico universale.md
2024-07-05 19:22:13 +02:00

1.1 KiB

Un gate quantistico che permette di effettuare una rotazione su asse arbitrario.

Usando la formula di Eulero, esso corrisponde a: \def \varX {{\color{coral} a}} \def \varY {{\color{cornflowerblue} b}} \def \varZ {{\color{yellowgreen} c}} \def \varI {{\color{hotpink} i}} \Huge \mathbf{U}(\varX, \varY, \varZ) = \begin{bmatrix} \cos \left( \frac{\varX}{2} \right) & - e^{\varI \varZ} \sin \left( \frac{\varX}{2} \right) \ e^{\varI \varY} \sin \left( \frac{\varX}{2} \right) & e^{\varI \varY + \varI \varZ} \cos \left( \frac{\varX}{2} \right) \end{bmatrix}

Espanso, sarebbe: \def \varX {{\color{coral} a}} \def \varY {{\color{cornflowerblue} b}} \def \varZ {{\color{yellowgreen} c}} \def \varI {{\color{hotpink} i}} \mathbf{U}(\varX, \varY, \varZ) = \begin{bmatrix} \cos \frac{\varX}{2} & - (\cos \varZ + \varI \sin \varZ) \cdot \sin \frac{\varX}{2} \ (\cos \varY + \varI \sin \varY) \cdot \sin \frac{\varX}{2} & (cos (\varY + \varZ) + \varI \sin (\varY + \varZ)) \cdot \cos \frac{\varX}{2} \end{bmatrix}

Note

Il parametro \varX modifica il valore del qbit, mentre i parametri \varY e \varZ ne modificano la fase!